SUMMARY

Seventy phosphogypsum stacks are scattered throughout the United States, concentrated in low-wealth and Black, indigenous, and people of color communities. These radioactive waste heaps have a long history of failures, and present a substantial hazard and unreasonable risk of harm. The U.S. Environmental Protection Agency (EPA) should swiftly move to regulate these environmental and public health hazards. This Article examines the regulatory failures that have given rise to the proliferation of phosphogypsum stacks in vulnerable communities and sensitive environments in the United States. It argues that EPA has the authority, and with President Joseph Biden’s Executive Orders, the mandate to take corrective action to remedy these environmental injustices.

Over Easter weekend in 2021, the governor of Florida ordered a state of emergency for Manatee County and the evacuation of 300 homes because a phosphogypsum stack (or gypstack) was about to capsize and release a 20-foot tidal wave of wastewater and fertilizer waste. Ultimately, the Florida Department of Environmental Protection (FDEP) authorized the owner of the Piney Point phosphogypsum stack to discharge wastewater into Tampa Bay, in an effort to prevent the stack from bursting open. The discharge lasted almost two weeks and contained approximately 186 metric tons of nitrogen, which fueled a deadly red tide in Tampa Bay that killed nearly 2,000 tons of marine life, including more than 30 federally threatened Florida manatees. While Piney Point was a particularly well-documented, problematic phosphogypsum stack, it is not unique. Many of the more than 70 mountainous piles of radioactive, toxic, and hazardous waste scattered throughout the United States are concentrated among low-wealth communities and have a long history of structural failures, releases, breaches, discharges, and even sinkholes. They pose a substantial present and future hazard and an unreasonable risk of injury to human health and the environment. Meanwhile, the fertilizer industry continues to pursue regulatory loopholes to relieve it regulatory burden and shift the risk of harm to the public. To date, the U.S. Environmental Protection Agency (EPA) has abdicated its responsibility to evaluate and minimize the unreasonable risk or ensure protection of human health and the environment through adequate regulation.

Author’s Note: The author is indebted to the invaluable work of Rachael Curran, a tireless advocate on this issue, and whose work co-authoring a petition to the U.S. Environmental Protection Agency to regulate phosphogypsum was essential to the framing of this Article. Jaclyn is also deeply appreciative of Kara Clauser and Curt Bradley, geographic information system specialists, for creating the graphics. Jaclyn also thanks the editorial staff at ELI.

2. Id.

EPA’S OPPORTUNITY TO REVERSE THE FERTILIZER INDUSTRY’S ENVIRONMENTAL INJUSTICES

by Jaclyn Lopez

Jaclyn Lopez is a senior attorney with the Center for Biological Diversity.
failures of these ticking time bombs, the moment is ripe for EPA to take back federal control and put an end to these environmental and public health hazards. This Article examines the rise of phosphogypsum stacks and their placement throughout vulnerable communities and sensitive environments in the United States, and explains how President Biden’s EPA has the authority and obligation to rein them in. It does not document the harm from the phosphate mining that makes phosphogypsum production possible, the direct water pollution from fertilizer factory effluent, or the impacts of pesticide and fertilizer application or runoff that result from the use of synthetic fertilizer, nor does it analyze the regulatory frameworks for addressing them.

I. What Is Phosphogypsum?

Phosphogypsum is the radioactive, toxic waste created during wet-process phosphoric acid production.7 Phosphoric acid is the intermediate feedstock of granular and liquid ammonium phosphate fertilizers.8 In the United States, phosphoric acid is produced from phosphate rock mined from mineral deposits in Florida, Idaho, North Carolina, and Utah, with the largest deposit and the majority of the nation’s phosphate mining occurring in Florida, where 27 strip mines span more than 450,000 acres.9

After strip mining and beneficiation to remove sand and clay from the phosphate matrix, calcium phosphate ore is transported to a fertilizer plant for processing by chemically digesting the phosphate ore in sulfuric acid.10 This reaction results in a slurry of phosphoric acid and phosphogypsum (calcium sulfate dihydrate or calcium sulfate hemihydrate, depending on the type of wet process) as a suspended solid, at a rate of 5.2 tons of phosphogypsum waste for every one ton of phosphoric acid.11 The phosphoric acid solution is filtered from the phosphogypsum and concentrated through evaporation to be sold as merchant-grade phosphoric acid, feed-grade phosphoric acid, and superphosphoric acid, or used as feedstock for finished fertilizer products like diammonium phosphate (DAP) or monoammonium phosphate (MAP).12

The phosphogypsum waste is then reslurried with recycled process wastewater and pumped via pipeline for disposal in a settling pond impoundment atop a waste pile known as a phosphogypsum stack,13 where the phosphogypsum settles, thereby growing the stack.14 The settled phosphogypsum is dredged to build up embankments at the sides of the impoundment containing the process wastewater.15 Cooling ponds containing process wastewater are also situated at or below grade along the perimeter of the stack.16 The process wastewater is meant to be primarily recycled in fertilizer plant operations, making uninterrupted plant operation critical to maintaining a negative process water balance.17 Even still, during periods of precipitation, discharges to surface waters are often permitted.18

While modern, active stacks and adjacent cooling ponds are lined with a single synthetic geomembrane liner, these liners can tear and are designed to leak (i.e., permeable), creating a “zone of discharge”19 in the surficial aquifer that in some cases is explicitly allowed by permit.20 As a stack grows in height, the settling impoundment atop the stack decreases in size until the settling pond capacity becomes too small and the pumping height requires too much energy.21 At this point, the stack is either expanded horizontally, or it reaches the end of its useful life.22

Phosphogypsum contains calcium sulfate and many contaminants, including radionuclides from uranium, thorium, and radium, which decay to harmful radon gas; toxic heavy metals; fluoride; ammonia; and residual phosphoric and sulfuric acids.23 The process wastewater also contains these harmful toxic constituents and is highly acidic and corrosive, with pH (hydrogen ion concentration) measurements as low as 0.5.24

Phosphogypsum stack systems are prone to extensive groundwater contamination, dike breaches, leakage, unexplained seepage, sinkholes, instability that threatens outright collapse, and excess process water balances in the event of a plant shutdown or abandonment necessitating intentional large-volume releases of process water to prevent further catastrophe.25 Further, this underregulated

12. Id.
14. REPORT TO CONGRESS, supra note 10, at 12–4.
15. Id.
16. Id.
17. Id. at 12-2.
18. Id.
19. The horizontal extent of a permitted zone of discharge is typically the property boundary, but groundwater contamination exceeding drinking water standards often extends well beyond the zone. REPORT TO CONGRESS, supra note 10, at 12-13.
22. Id.; see also Ardaman & Associates, Phase III Expansion Application, Mosaic Fertilizers, LLC—New Wales Facility, FDEP Permit #MMR_FL0036421 (Oct. 25, 2019); REPORT TO CONGRESS, supra note 10, at 12-31.
23. REPORT TO CONGRESS, supra note 10, at 12-3.
24. Id. at 12-4.
25. Id. at 12-31.
waste stream has been abused as a repository for illegal dumping for other already designated hazardous wastes.26

The U.S. phosphate fertilizer industry is responsible for generating approximately 46 million tons of phosphogypsum in the United States annually.27 And while 50% of the phosphoric acid product is exported,28 100% of the phosphogypsum waste remains in the United States, stored in ever-expanding phosphogypsum stacks near the fertilizer facilities that generated them.29 A phosphogypsum stack can be more than one square mile wide30 and 500 feet tall,31 and store more than one billion gallons of process wastewater.32 More than 30 million tons of phosphogypsum per year are produced in Florida alone,33 and an estimated one billion tons are already stacked there.34

There are no imminent shortages of phosphate rock, and global consumption of phosphoric acid is expected to increase by three million tons in 2023.35 In Florida, where the majority of the nation’s phosphate mining occurs, the phosphate industry plans to strip mine an additional 90,905 acres for phosphate over the next 50 years, producing approximately another billion tons of phosphogypsum from processing Florida phosphate rock alone.36 Thus, these mountains of radioactive waste that are already a part of several states’ environmental legacies will only get exponentially larger and more dangerous with time if EPA does not take immediate action.

A. Documented Phosphogypsum Stack Failures Throughout the United States

On April 6, 1992, the southern retaining wall of Mobil Mining and Mineral’s No. 3 phosphogypsum stack experienced structural failure, releasing 45 million gallons of phosphogypsum and process water with a pH of less than two standard units.37 The release flowed into Cotton Patch Bayou and eventually the Houston Ship Channel through a barge basin, covering large areas of terrestrial and aquatic habitat and adversely affecting surface water quality within approximately seven miles of the Houston Ship Channel, resulting in a fish and macrocrustacean kill.38 Freshwater, marine, and estuarine wildlife, fish, invertebrates, plants, and sediments all sustained injuries, as well as terrestrial wildlife, plants, and soils.39 Cotton Patch Bayou was severely impacted, and prior to the release the bayou had provided habitat for species of songbirds and wading birds, terrestrial reptiles, amphibians, mammals, crayfish, and numerous other invertebrates.40

During a Florida rainstorm on December 7, 1997, the crest of the south wall containing a settlement pond atop the Mulberry facility’s south stack washed out, causing approximately 54 million gallons of process wastewater and an undetermined amount of phosphogypsum slurry to spill into the North Prong of the Alafia River,41 eventually traversing 35 miles of the Alafia River before reaching Hillsborough and Tampa Bays.42 With a pH of 2, the process wastewater discharge drastically altered pH throughout the length of the Alafia River, with post-spill pH measurements ranging from 2.8 standard units in the upper, freshwater portion of the river to 4 standard units in the lower, estuarine portion.43

Reported as the “worst environmental disaster in the Alafia River’s history,” the spill caused a significant fish kill throughout the length of the river from Mulberry to Hillsborough Bay, including an estimated 1.3 billion baitfish and shellfish and 72,900 gamefish.44 The spill also caused injuries to freshwater benthic communities, oysters, and mussels.45 Through the loss of habitat and prey, the spill may also have indirectly injured animals that utilize the Alafia River and surrounding wetlands, including for

29. Id.
31. Id.
38. Id.
39. Id.
40. Id.
44. National Oceanic and Atmospheric Administration, supra note 42, at 10.
breeding.46 Approximately 377 acres of freshwater vegetation were injured or lost to the spill, including the die-off of freshwater wetland vegetation and eight acres of mature hardwoods.47 Due to the 350 tons of nitrogen ultimately sent to Tampa Bay,48 the spill caused imbalances in aquatic fauna, algae blooms, and increased chlorophyll \textit{a} concentrations in both the river and bay through the following year.49 A consultant-led investigation later determined that the dike breach formed because of the routine removal of a decant pipe and subsequent backfilling of the pipe trench with phosphogypsum, a process “similar to that used by many gypsum stack operators worldwide.”50

During Hurricane Frances on September 5, 2004, high winds and rain eroded a berm atop a phosphogypsum stack at Cargill Fertilizer’s Riverview facility,51 causing 65 million gallons of process wastewater to discharge into South Archie Creek and eventually Hillsborough Bay.52 The spill caused documented death and injury to many estuarine-dependent species, including tidal marsh, red, black, and white mangrove forests, salt grass, blue crab, fiddler crab, various shrimp species, water column organisms, seagrasses, sand seaturt, striped mullet, spadefish, stingray, croaker, menhaden, sea robin, hog choker, white grunt, scaled sardine, mojarra, spotted seaturt, red drum, and common snook.53 In addition, the open waters of Hillsborough Bay provide important habitat for seabirds, marine fish species, and marine mammals like the bottlenose dolphin and West Indian manatee, although no direct injuries of these species were observed.54 Approximately 78.4 acres of mangroves and 57.3 acres of tidal marsh experienced die-off, while 21.57 of 24.44 acres of seagrass along the shoreline of Hillsborough Bay showed signs of stress after contact with the process wastewater, with the remaining 2.87 acres of seagrass no longer visible after the discharge.55

On April 14, 2005, a rainfall of 26 centimeters (cm) in less than 24 hours caused a stack breach at the Mississippi Phosphates facility, releasing more than 17 million gallons of process wastewater and damaging marsh vegetation, fish, and oysters at the Bangs Lake station of the Grand Bay National Estuarine Research Reserve.56 Seven years later, after 76 cm of rain fell from August 28-30 due to Hurricane Isaac, the facility released another 90 million gallons of process wastewater over the course of three days into Bayou Cosette, where a fish kill was observed.57

Prior to filing for bankruptcy, Mississippi Phosphates had been cited for hundreds of violations of its Clean Water Act (CWA)58 permit for discharging wastewater that exceeded limits for ammonia, phosphorus, total suspended solids, fluoride, temperature, and pH.59 In 2015, the company pleaded guilty to discharging more than 38 million gallons of acidic process wastewater in August 2013, failing to treat the water with caustics to mitigate its toxicity to marine life as required by its permit.60 The illegal discharge resulted in the death of more than 47,000 fish and the closing of Bayou Cosette, one of the most productive nurseries for aquatic species on the Gulf Coast.61

Pinney Point was a Florida phosphate fertilizer plant owned and operated by multiple different corporations from 1966 until operations ceased in 1999.62 Historically, Pinney Point consisted of an acid plant, a phosphoric acid plant, an ammoniated phosphate fertilizer plant with storage for ammonia, phosphoric acid, and other products necessary for the manufacture of fertilizer, and related facilities.63 In February 2001, Mulberry Corporation filed for bankruptcy and provided the FDEP with 48 hours’ notice that it was abandoning the property.64 Between 2001 and 2004, FDEP discharged approximately 1.1 billion gallons of precipitation and process wastewater from Pinney Point into Tampa Bay and Bishop Harbor.65

In 2011, Pinney Point again discharged 169 million gallons of wastewater.66 On March 25, 2021, HRK Holdings, LLC reported to FDEP increased flow and conductivity measurements in the drains that surround the phosphogypsum impoundments. FDEP authorized the discharge of 215 million gallons of toxic wastewater into Tampa Bay.67 The discharge contained significant amounts of nutrients, including nearly 200 metric tons of nitrogen.68 That pollution fueled a red tide and fish kill in Tampa Bay,69 and gave rise to a lawsuit under the Resource Conservation
and Recovery Act (RCRA)70 and the CWA.71 The FDEP recently issued a permit authorizing the deep well injection of the remaining wastewater despite a state ban on the deep well injection of hazardous waste.72

B. Routine Violations of Permit Conditions

As an initial matter, it was historically industrywide practice to illegally commingle other mining-related hazardous waste with phosphogypsum and process wastewater. Operations at Piney Point illustrate how the industry’s MAP and/or DAP production process waste was routinely mixed with phosphogypsum and process water. In 1990, Royster Phosphates, Inc., then-operator of the Piney Point facility, provided EPA with its response to a regulatory questionnaire entitled “National Survey of Solid Wastes From Mineral Processing Facilities.” The questionnaire was “designed to obtain information on the generation and management of selected solid wastes from mineral processing facilities.”73

The questionnaire was EPA’s method of fulfilling the congressional requirement that EPA determine whether “special wastes” such as phosphogypsum should be subject to the requirements of Subtitle C of RCRA, the chapter of RCRA that focuses on hazardous wastes. Royster Phosphates, Inc.’s response to EPA’s questionnaire included maps of the Piney Point facility that demonstrate the facility utilized a MAP and/or DAP production process. The maps identify both a DAP plant as well as a “diammonium phosphate pond” at the site and show that the waste stream from the DAP production process was disposed of in the phosphogypsum stack system.

In 2015, EPA announced a record $2 billion RCRA settlement with Mosaic Fertilizer, LLC for illegally commingling 60 billion pounds of hazardous waste with Bevill-exempt waste at several facilities in Florida and Louisiana.74 More recently, EPA settled with J.R. Simplot Company in July 2020, where the company agreed to pay a civil penalty of $775,000, also for placing hazardous wastes in a Bevill-exempt phosphogypsum stack system.75

II. Regulatory Framework

There are several applicable laws, regulations, and policies that individually, and certainly when read together, should result in the robust regulation of phosphogypsum. These frameworks are based on the fundamental principle that the federal government has an obligation to protect communities and the environment from harm from industrial waste. President Biden’s recent Executive Orders call on all federal agencies to address environmental injustices.

RCRA directs EPA to protect human health and the environment from hazardous waste. The Toxic Substances Control Act (TSCA)76 tasks EPA with managing the unacceptable risks of chemicals to human health and the environment. The Clean Air Act (CAA)77 requires EPA to regulate air emissions that may present a risk to human health or the environment. The National Environmental Policy Act (NEPA)78 mandates all federal agencies to consider the environmental consequences of their actions, prior to acting. Yet, with all these environmental safety nets, there are still billions of tons of radioactive waste decaying in dozens of communities throughout the United States, leaking, breaching, contaminating soil and water, and putting human lives at risk.

A. Executive Orders on Environmental Justice

In the first few days of his presidency, President Biden directed every agency to make environmental justice a part of their missions and to develop and implement programs and policies that address “the disproportionate health, environmental, economic, and climate impacts on disadvantaged communities.”79 EPA’s working definition of “environmental justice” is: “The fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income, with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.”80

President Biden’s Executive Order No. 14008 establishes a White House Environmental Justice Interagency Council and a White House Environmental Justice Advisory Council to ensure agencies work to address environmental injustices.81 It also creates the “Justice40 Initiative” with the goal that 40% of federal investments benefit disadvantaged communities,82 and instructs the chair of the White House Council on Environmental Quality (CEQ) to develop a screening tool to prioritize disadvantaged communities.

70 42 U.S.C. §§6901-6992k, ELR Stat. RCRA §§1001-11011.
71 Center for Biological Diversity v. DeSantis, No. 8:21-cv-1521-WFJ-CPT (M.D. Fla. June 24, 2021). [Editor’s Note: Jaclyn Lopez represents the Center for Biological Diversity (and co-plaintiffs) in this case.]
77 42 U.S.C. §§7401-7674q, ELR Stat. CAA §§101-618.
78 42 U.S.C. §§4321-4370h, ELR Stat. NEPA §§2-209.
communities and evaluate impacts of federally funded or authorized projects.83

The White House Environmental Justice Interagency Council is charged with developing strategies to address environmental injustice and measures for accountability. The White House Environmental Justice Advisory Council, a nonfederal stakeholder group, will provide recommendations to the CEQ chair on how to address environmental injustices.84

Executive Order No. 12898 instructs federal agencies to address adverse health and environmental effects on Black, indigenous, and people of color (BIPOC) and low-wealth populations.85 While the Executive Order does not provide a direct right to judicial review,86 courts have reviewed environmental justice claims under the Administrative Procedure Act’s arbitrary and capricious standard.87

B. RCRA

Finding that land is “too valuable a national resource to be needlessly polluted by discarded materials,”88 the U.S. Congress passed RCRA in 1976 to address increasing problems associated with the growing volume of industrial and municipal waste. RCRA’s goals include reducing the amount of solid waste generated, ensuring that these wastes are managed in an environmentally sound manner,89 and protecting human health and the environment from the potential hazards of waste disposal. To achieve these goals, RCRA established two distinct programs: (1) the solid waste program, under RCRA Subtitle D, encourages states to develop comprehensive plans to manage nonhazardous industrial solid waste and municipal solid waste, sets criteria for municipal solid waste landfills and other solid waste disposal facilities, and prohibits the open dumping of solid waste; and (2) the hazardous waste program, under RCRA Subtitle C, establishes a “cradle to grave” system for controlling hazardous waste from the time it is generated until its final disposal.

Within the meaning of solid waste, RCRA further defines “hazardous waste” as any discarded material “which because of its quantity, concentration characteristics, or physical, chemical or infectious characteristics may—

(A) cause, or significantly contribute to an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness; or

(B) pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, or disposed of, or otherwise managed.”89

In its proposed regulatory framework for implementing the RCRA Subtitle C hazardous waste program, EPA first introduced the concept of “special wastes,” which include mining, beneficiation, and ore processing because of their typically high volumes and perceived low—but at the time understudied—hazard to human health and the environment. While EPA’s “special wastes” concept did not make it into the final rules published in 1980, it formed the basis of the Bevill Amendment passed by Congress later that year.

1. The Bevill Amendment

The 1980 Bevill Amendment suspended EPA’s authority to regulate “special wastes,” including mining and mineral processing wastes, as hazardous under Subtitle C until six months after EPA’s completion of a detailed study on the adverse human health and environmental effects and a published Bevill determination for each particular category of special waste. Study requirements for mineral processing wastes like phosphogypsum and process wastewater included analysis of the following:

(1) the source and volumes generated per year;
(2) present disposal and utilization practices;
(3) potential danger, if any, to human health and the environment from disposal and reuse of such materials;
(4) documented cases in which danger to human health or the environment has been proved;
(5) alternatives to current disposal methods;
(6) the costs of such alternatives;
(7) the impact of those alternatives on the use of phosphate rock and uranium ore, and other natural resources; and
(8) the current and potential utilization of such materials.90

EPA took more than a decade to make a Bevill determination for mineral processing wastes, including phosphogypsum and process wastewater.91

83. Id.
86. Id. at 7633.
87. See, e.g., Coliseum Square Ass’n, Inc. v. Jackson, 465 F.3d 215, 232, 36 ELR 20135 (5th Cir. 2006) (environmental justice study part of NEPA analysis reviewed as part of administrative record subject to arbitrary and capricious review); Standing Rock Sioux Tribe v. U.S. Army Corps of Eng’rs, 255 F. Supp. 3d 101, 140, 47 ELR 20035 (D.D.C. 2017); Latin Ams. for Soc. & Econ. Dev. v. Administrator of the Fed. Highway Ass’n, 756 F.3d 447 (6th Cir. 2014); but see City of Dallas, Tex. v. Hall, No. 3-07-cv-0060-P, 2007 U.S. Dist. LEXIS 78847, 2007 WL 3125311, at *6 (N.D. Tex. Oct. 24, 2007) (if mandates of Executive Orders are not part of NEPA analysis, then agency’s compliance with Executive Orders is not subject to review under the Administrative Procedure Act’s arbitrary and capricious standard).
88. 42 U.S.C. §6901(b).
89. “Solid waste” means any garbage, refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid, semisolid, or contained gaseous material resulting from industrial, commercial, mining, and agricultural operations, and from community activities, “subject to certain exclusions. Id. §6903(27).
90. Id. §6903(5).
91. Id. §6982(p).
2. The Simpson Amendment

The 1984 Simpson Amendment provided that EPA can modify some of the requirements of Subtitle C for special wastes that the Agency determines are hazardous waste. The modifications can account for the unique characteristics of mining and processing wastes and the practical difficulties associated with implementation, but must “assure protection of human health and the environment.”93 The amendment specifically lists phosphate mining and processing wastes as wastes eligible for this Subtitle C regulatory flexibility.94

Given RCRA’s mandates to protect public health and the environment from unreasonable risks of harm from hazardous waste, EPA may find strong support for decisionmaking that centers on environmental justice factors.95

C. TSCA

TSCA directs EPA to evaluate new and existing chemicals and their risks to human health and the environment, and to then implement regulations to manage unacceptable risks, therefore preventing or reducing pollution caused by these substances before they enter the environment. Under TSCA, EPA has the authority to impose recordkeeping, reporting, and testing requirements upon manufacturers, and to develop restrictions relating to chemical substances96 and mixtures.97 Once a substance is evaluated for risk, if EPA determines the risk of injury to human health and the environment is unreasonable, EPA must propose regulations under §6(a) to remove the unreasonable risk.

Faced with a significant backlog in EPA’s evaluation and management of existing chemicals, the Frank R. Launenberg Chemical Safety for the 21st Century Act of 2016 mandated EPA to evaluate existing chemicals for their risk of injury to human health and the environment, including a system of prioritization, with clear and enforceable deadlines. The amendment also directed EPA to conduct risk-based chemical evaluations without consideration of costs to the industry.

1. Prioritization Under §6

A high-priority substance is a chemical substance EPA determines may present an unreasonable risk of injury to health or the environment because of a potential hazard and a potential route of exposure under the “conditions of use,” which include disposal.98 EPA must prioritize and make risk of injury determinations without consideration of costs and include consideration of the risk to potentially exposed or susceptible subpopulations.99

EPA notes that through the prioritization process, EPA is ultimately making a judgment as to whether or not a particular chemical substance warrants further assessment and ultimately a §6(b) risk evaluation as a high-priority substance.100 It intends to select as high-priority chemicals those with the greatest hazard and exposure potential first.101 Low-priority substances are thus chemicals for which EPA has determined, based on sufficient information to establish and without consideration of costs or other non-risk factors, that a §6(b) risk evaluation is not warranted at the time of priority designation.102

Once the prioritization process is initiated, EPA must publish a notice in the Federal Register, beginning a 90-day period during which interested persons may submit relevant information,103 including information relevant to the following screening factors EPA will use to decide whether to propose designation as a high-priority or low-priority substance:

1. The chemical substance’s hazard and exposure potential;
2. The chemical substance’s persistence and bioaccumulation;
3. Potentially exposed or susceptible subpopulations;
4. Storage of the chemical substance near significant sources of drinking water;
5. The chemical substance’s conditions of use or significant changes in conditions of use;
6. The chemical substance’s production volume or significant changes in production volume; and
7. Other risk-based criteria that EPA determines to be relevant to the designation of the chemical substance’s priority.104

After conducting the screening review, EPA must then propose to list the chemical as either a high-priority or low-priority substance, and the proposed designation is subject to another 90-day public comment period.105 A final high-priority designation is only appropriate after EPA initiates prioritization and the close of the second 90-day comment period. The entire prioritization process may take nine to 12 months from the date of the first publication of the notice of initiation of prioritization.106

94. Id. §60924(a).
96. “The term ‘chemical substance’ means any organic or inorganic substance of a particular molecular identity, including—(i) any combination of such substances occurring in whole or in part as a result of a chemical reaction or occurring in nature, and (ii) any element or uncombined radical.” 15 U.S.C. §2602(2).
97. “The term ‘mixture’ means any combination of two or more chemical substances if the combination does not occur in nature and is not, in whole or in part, the result of a chemical reaction. . . .” Id. §2602(10).
98. 40 C.F.R. §702.3 (2020).
99. Id.
101. 40 C.F.R. §702.5(a) (2020).
102. Id. §702.3.
103. Id. §702.7(d).
104. Id. §702.9(a).
105. Id. §702.9.
106. Id. §702.1(d).
Once a substance is designated as a high-priority substance, a risk evaluation is initiated and EPA has three years, subject to a possible one-time extension of six months, to complete the evaluation and make a final determination of risk.107 For substances that EPA has determined pose an unreasonable risk, EPA has one year, extendable by up to two years, to propose a rule under §6(a) where EPA takes action to manage or minimize the risk so that it is no longer unreasonable. Such action can include, among others, a ban, limitation on quantities produced, or regulation governing disposal.108

2. Testing Rules Under §4

To facilitate the policy that “adequate information should be developed with respect to the effect of chemical substances and mixtures on health and the environment and that the development of such information should be the responsibility of those who manufacture and those who process such chemical substances and mixtures,”109 TSCA requires EPA to direct testing on a chemical substance or mixture if it finds the following criteria are met:

(I) the manufacture, distribution in commerce, processing, use, or disposal of a chemical substance or mixture, or that any combination of such activities, may present an unreasonable risk of injury to health or the environment,

(II) there is insufficient information and experience upon which the effects of such manufacture, distribution in commerce, processing, use, or disposal of such substance or mixture or of any combination of such activities on health or the environment can reasonably be determined or predicted, and

(III) testing . . . is necessary to develop such information110

D. The CAA

The purpose of CAA §112(a) is to control air emissions from any hazardous air pollutant that “causes or contributes to air pollution which may reasonably be anticipated to result in an increase in mortality or an increase in serious irreversible or incapacitating illness.”111 In 1977, Congress amended the CAA after finding:

It is clear that exposure to radioactive materials can cause serious harm to health, including cancer, genetic damage, and birth deformities. Materials that are radioactive may remain so for thousands of years. This longevity poses a special problem for living organisms. Furthermore, exposures to radioactivity are cumulative, that is, each new or additional exposure increases the risk of serious illness.112

In 1979, EPA issued a determination that radionuclides should be regulated as a hazardous air pollutant under §112 of the CAA because they are a known cause of cancer and genetic damage and present a risk warranting regulation under §112.113 Following a lawsuit to enforce §7412(b) (I)(B), which required EPA to issue proposed regulations within 180 days,114 in 1983, EPA proposed standards regulating radionuclide emissions from elemental phosphorus plants, but explicitly not from other sources in the phosphate industry.115

In 1984, EPA withdrew the proposed emission standards for elemental phosphorus plants, asserting that the public was already protected from exposure to radionuclides with an ample margin of safety, and reaffirmed its decision to not regulate other aspects of the phosphate industry.116 In 1985,117 EPA promulgated standards for radionuclide emissions from phosphorus plants,118 which was challenged by conservation and industry groups. In 1987, following a U.S. Court of Appeals for the District of Columbia (D.C.) Circuit decision (\textit{Vinyl Chloride} case) that EPA improperly considered cost and technological feasibility of regulating vinyl chloride without first deciding based exclusively on risk to health,119 EPA voluntarily remanded its elemental phosphorus plants standards decision.120

\textit{The Vinyl Chloride} case established that to make a determination under §112, EPA must first determine a “safe” or “acceptable” level of risk considering only health-related factors, and next must set a standard that provides an “ample margin of safety” in which costs, feasibility, and other relevant factors may be considered.121 In 1989, EPA again determined that radiation causes cancer, hereditary effects, and developmental effects on fetuses; that numerous studies have demonstrated radiation is a carcinogen; that it is assumed that there is no completely risk-free level of exposure of radiation for cancer; and that its initial evaluation of radionuclides in 1979 was correct. EPA accordingly proposed listing radionuclides for regulation under

107 Id. §702.49.
109 Id. §2601(b)(1).
110 Id. §2603(a)(1)(A)(i).
111 42 U.S.C. §7412.
114 Sierra Club v. Gorsuch, 551 F. Supp. 785, 13 ELR 20231 (N.D. Cal. 1982).
115 National Emission Standards for Hazardous Air Pollutants; Standards for Radionuclides, 48 Fed. Reg. 15076 (Apr. 6, 1983).
116 National Emission Standards for Hazardous Air Pollutants; Regulation of Radionuclides, 49 Fed. Reg. 43906 (Oct. 31, 1984).
120 National Emission Standards for Hazardous Air Pollutants; Regulation of Radionuclides, 54 Fed. Reg. 9612 (Mar. 7, 1989).
§112. Later that year, EPA finalized the rule for emissions of radionuclides from elemental phosphorus plants and phosphogypsum stacks.123 While the CAA does not specifically dictate environmental justice considerations, it does require agency decisionmaking that considers levels of risk to communities, albeit with an allowance for weighing technological and economic factors.124

E. NEPA

NEPA is “our basic national charter for protection of the environment.”125 Congress enacted NEPA with the ambitious objectives of “encourag[ing] productive and enjoyable harmony between man and his environment . . . promot[ing] efforts which will prevent or eliminate damage to the environment and biosphere and stimulating the health and welfare of man; and enrich[ing] the understanding of the ecological systems and natural resources important to the Nation . . . “126 Further,

NEPA has twin aims. First, it places upon an agency the obligation to consider every significant aspect of the environmental impact of a proposed action, and to consider reasonable alternatives that could mitigate those impacts. Second, it ensures that the agency will inform the public that it has indeed considered environmental concerns in its decisionmaking process.127

NEPA mandates several “action forcing” procedures—most importantly, the requirement to prepare an environmental impact statement (EIS) on major federal actions “significantly affecting the quality of the human environment.”128 The term “human environment” is to be interpreted comprehensively to include the natural and physical environment and “the relationship of people with that environment.”129 The CEQ regulations, which are binding on all federal agencies, explain, “When an environmental impact statement is prepared and economic or social and natural or physical environmental effects are interrelated, then the environmental impact statement will discuss all of these effects on the human environment.”130

An EIS must detail “the environmental impact of the proposed action,” “any adverse environmental effects which cannot be avoided,” and any reasonable alternatives.131 It must analyze not only the direct impacts of a proposed action, but also its indirect and cumulative impacts.132 “Indirect effects” are “caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable.”133 A “cumulative effect” is the impact on the environment “which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions.”134 This ensures “environmental information is available to public officials and citizens before decisions are made and before actions are taken.”135 Because the information presented “must be of high quality, . . . [a]ccurate scientific analysis . . . and public scrutiny are essential to implementing NEPA.”136 The preparation of an EIS does not terminate an agency’s duties under NEPA. NEPA requires that an agency “shall” supplement an EIS when the “agency makes substantial changes in the proposed action,” or “significant new circumstances or information” arise that are relevant to the environmental impacts of the action.137 Underlying all of NEPA’s procedural requirements is the mandate that agencies take a “hard look” at all of the environmental impacts and risks of a proposed action. This hard look must include an analysis of environmental justice impacts.138

The NEPA process provides the clearest avenue for agency decisionmaking that incorporates environmental justice considerations.139 CEQ’s guidance to federal agencies on incorporating environmental justice considerations in decisionmaking explains that they are to be considered at every stage.140 For example in the scoping stage, the action agency should develop a strategy for seeking input from low-wealth and BIPOC communities in the area and should substantively address concerns raised by those communities.141 The CEQ guidance states that participation

122. 54 Fed. Reg. at 9615.
123. Phosphogypsum is the waste byproduct of wet-process phosphoric acid production, the intermediate feedstock of granular and liquid ammonium phosphate fertilizers. U.S. GEOLOGICAL SURVEY, supra note 8.
124. Salcido, supra note 95, at 24.
125. 40 C.F.R. §1500.1(a) (2020).
130. Id.
from these communities is “necessary” for the “full consideration” of the project and alternatives. 142

The action agency should also analyze and explain whether the project will have a “disproportionately high and adverse human health or environmental impact” on BIPOC or low-wealth communities. 143 Where the project will cause impacts, the action agency should consider those impacts in its analysis and identification of the “environmentally preferable alternative” in the record of decision, and describe efforts to minimize and mitigate them. 144

EPA’s Guidance for Incorporating Environmental Justice Concerns in EPA’s NEPA Compliance Analyses goes further, requiring enhanced outreach efforts to BIPOC and low-wealth communities as well as an enhanced analysis to identify and assess impacts. 145

The D.C. Circuit has held that “section 111 of the Clean Air Act, properly construed, requires the functional equivalent of a NEPA impact statement.” 146 Courts applying other sections of the CAA and other statutes EPA implements have likewise held that while EPA is not required to comply with NEPA as an “environmentally protective regulatory agency,” it is required to provide the functional equivalent to NEPA. Notably, even where there is no statutory requirement to prepare an EIS or environmental assessment (EA), like with the CAA’s functional equivalent, agencies should still meet their obligations to consider the environmental justice impacts of their actions and “augment their procedures as appropriate to ensure that the otherwise applicable process or procedure for a federal action addresses environmental justice concerns.” 147

III. Regulatory History of Phosphogypsum Stacks

Despite EPA’s acknowledgment of the need for comprehensive federal phosphogypsum stack regulation since at least 1984, the fertilizer industry has enjoyed relative freedom from regulation of many of the legal frameworks it is theoretically subject to. 148 The most significant form of regulation came when EPA reevaluated the need for radionuclide emission standards under the CAA, after preliminary risk assessments indicated individual lifetime risks of cancer from exposure to radon emissions from existing stacks were as high as eight in 10,000 and that population risks were on the order of one fatal cancer per year. 149

Citing concern that radium-rich phosphogypsum would be incorporated into other products and diffused throughout the country such that EPA would be unable to ensure phosphogypsum radon emissions do not present an unacceptable risk to public health, EPA promulgated a national emission standards for hazardous air pollutants (NESHAP) rule in the form of a work practice standard that required all phosphogypsum be disposed into stacks or old phosphate mines. 150 EPA found that in order to control the dispersion of phosphogypsum and the resultant release of radon gas (a decay product of radium-226 found in phosphogypsum) to ambient air, the phosphogypsum, once created, must be disposed in stacks such that the radon emission is limited to a level of 20 picocuries per square meter per second (pCi/m²-s). 151 The 1989 rule also found that, if dispersed throughout the country, phosphogypsum would present a public health threat from radon gas emissions that would continue for generations given radium-226’s 1,600-year half-life, and that it would be impracticable for EPA to implement regulation of such numerous and diffuse sources. 152

The rule also limited radon emissions from stacks to a flux of 20 pCi/m²-s, but EPA acknowledged that both the stack requirement and the numerical radon flux emission standard imposed on the stacks were simply a maintenance of the status quo, as phosphogypsum stacks were already standard industry practice, and the NESHAP rule imposed no additional control technology since EPA believed all existing stacks already met the numerical radon flux standard. 153 In other words, EPA did nothing to manage or reduce the measured risk of fatal cancer from radon exposure that at the time applied to 95 million people living within 80 kilometers of a stack. 154 Testing to demonstrate compliance with the flux standard need only be measured one time once a stack becomes inactive. If the standard is met, it never needs to be tested again. 155 Since then, EPA has only become less consistent and firm in its regulation of phosphogypsum.

A. EPA’s Determination of Unacceptable Level of Risk to Public Health

Shortly following EPA’s 1989 final rule, The Fertilizer Institute (TFI) and others petitioned EPA under 42 U.S.C. §7607(d)(7)(B) to reconsider the portion of the regulation (Subpart R) that requires disposal of phosphogypsum in stacks, arguing the regulation prevented other uses of phosphogypsum. 156 Industry argued the rule was adopted with-

142. Id. at 12.
143. Id. at 15.
144. Id. at 15-16.
147. CEQ, supra note 140, at 17.
149. Id.
150. An old phosphate mine receiving phosphogypsum waste would then also become a “phosphogypsum stack” for the purposes of the NESHAP National Emission Standards for Hazardous Air Pollutants; Radionuclides; Final Rule and Notice of Reconsideration, 54 Fed. Reg. 51654, 51675 (Dec. 15, 1989).
151. Id.
152. Id.
153. Id.
154. Id.
155. Id.
out proper notice and comment, was contrary to a national policy favoring recycling, prevented beneficial uses, would cause irreparable harm to farmers, was arbitrary and capricious because it prevented the sale of phosphogypsum for industrial processes, and that it was possible to make phosphogypsum radon gas emissions safe.158 EPA granted limited reconsideration to receive more information on (1) specific types of proposed alternative uses; (2) current and anticipated feasibility of those uses; (3) research and development of processes that remove radium from phosphogypsum; (4) health risks associated with those uses; (5) the availability, cost, and effectiveness of substitutes for phosphogypsum; and (6) the proper definition of phosphogypsum regarding its radium content.159 It also established a 60-day public comment period and a public hearing.159

In 1992, in response to TFI’s petition for reconsideration, EPA finalized national emission standards for radon emissions from phosphogypsum stacks approving the use of phosphogypsum in agriculture at 10 pCi per gram (pCi/g) and limited research and development with no more than 700 pounds of phosphogypsum. However, EPA found that “regardless of the radium-226 concentration, the use of phosphogypsum in road construction always resulted in a MIR [maximum individual risk] significantly greater than the presumptive safe level. . . . Therefore, EPA has determined that the use of phosphogypsum in road construction presents an unacceptable level of risk to public health.”160

EPA also found that phosphogypsum “contains appreciable quantities of radium-226, uranium, and other uranium decay products The radionuclides of significance are uranium-238, uranium-234, thorium-230, radon-222, lead-210, [and] polonium-210,”161 and that these toxins can be resuspended into the air by wind and vehicular traffic.162 It found that “[r]ace metals may also be leached from phosphogypsum, as are radionuclides, and migrate to nearby surfaces and groundwater resources,”163 that chromium and arsenic may also pose a significant health risk,164 and that a “number of potential constituents in phosphogypsum from some facilities . . . may cause adverse effects or the restriction of potential uses of nearby surface or groundwater resources” such as arsenic, lead, cadmium, chromium, fluoride, zinc, antimony, and copper.165

EPA concluded that “the level of risk presented by a particular application depends not only upon the radium-226 concentration in the phosphogypsum, but also the nature of the application, the exposure scenario, the exposure pathway, the amount of phosphogypsum used, and other factors”166 and that “for road construction applications, even at radium-226 concentrations 3 pCi/g, the risk to the maximum exposed individual is well above the acceptable level.”167 EPA also determined that, besides certain restricted uses for agriculture and research, “other uses of phosphogypsum will be prohibited without prior EPA approval,” approval that would be reviewed on a case-by-case basis “only if EPA finds that the proposed use of phosphogypsum will be at least as protective of public health in the short and long term as disposal in a stack or mine.”167

EPA established a process to consider other uses of phosphogypsum for approval. It requires an application that includes a description of the proposed use, handling, processing, and location of the facility; the quantity of phosphogypsum to be used by each facility; the average concentration of radium-226 in the phosphogypsum to be used; a description of measures to prevent the uncontrolled release of phosphogypsum into the environment; an estimate of the MIR, risk distribution, and incidence associated with the proposed use; and the intended disposition of any unused phosphogypsum.168 In 1994, EPA increased the permitted distribution of phosphogypsum to up to 7,000 pounds at a time for research and development activities.

On October 15, 2019, TFI, on behalf of its members that own or operate phosphogypsum stacks, petitioned EPA to approve the removal of phosphogypsum from stacks for use in road construction under 40 C.F.R. §61.206. On April 7, 2020, TFI submitted a revised request for approval for use of phosphogypsum in federal, state, and local departments of transportation or public works.169 Specifically, the request was for EPA to grant a blanket approval, in advance, for the use of phosphogypsum containing up to an average of 35 pCi/g in road base, paving, and various combinations of road base and paving in any government roadway projects that are (1) authorized by federal, state, or local departments of transportation or public works; and (2) conducted as part of a government road project using appropriate road construction standards.

TFI’s risk assessment purported to evaluate gamma radiation and phosphogypsum dust from no more than 50% of the roadbed material by weight and no more than 2.25% of road surface material by weight,170 and asserted the risk of fatal cancer in various exposure scenarios for road construction workers to be 0.5 in 10,000, road users 0.1 in 10,000, truck drivers of phosphogypsum for road construction 0.5 in 10,000, residents 0.08 in 10,000, and utility workers 0.004 in 10,000.171 It also included an

\textit{157. Id.}
\textit{158. Id. at 13480. 13482.}
\textit{159. Id. at 13482.}
\textit{162. Id.}
\textit{163. Id. at 2-8.}
\textit{164. Id.}
\textit{165. Id.}
\textit{166. 57 Fed. Reg. at 23305.}
\textit{167. Id.}
\textit{168. Id.}
\textit{170. It appears one major difference between the two requests is that the October 2019 petition requested a waiver that phosphogypsum be placed in stacks, whereas the revised petition’s request is narrower asking that phosphogypsum under 35 pCi/g be used for road construction.}
\textit{171. ARCADIS, RADIOLOGICAL RISK ASSESSMENT IN SUPPORT OF PETITION FOR BENEFICIAL USE OF PHOSPHOGYPSUM app. 2 at ES-2 (2019); Wheeler Letter, supra note 169, at 4.}
\textit{172. ARCADIS, supra note 171, at ES-2; Wheeler Letter, supra note 169, at 3.}
“Extreme Hypothetical ‘Reclaimer Exposure Scenario’,” in which it described the future scenario where a road breaks down or is broken down and a house is constructed on top of it. TFI’s “reclaimer exposure scenario” presumed customary construction methods for a house on grade and calculated risk of fatal cancer at 0.4 in 10,000.173

In its 1992 rule, EPA estimated the lifetime risk in the reclaimer scenario from external radiation, dust inhalation, and ingestion of food for 30 years of exposure to be 3.5 in 1,000 (35 in 10,000), far outside the acceptable level of risk.174 In response to TFI’s 2020 request, EPA retained SC&A, Inc. as its expert reviewer. SC&A determined TFI’s consultant, Arcadis, used modeling that was inappropriate and recommended that EPA request TFI revise its reclaimer radon exposure dose calculation “using more realistic (i.e., less optimistic) parameter values, or provide additional justification for the values”.175 Instead, EPA stated that:

though likely an underestimation of the dose and risk to a future resident of a house built on a site of an abandoned road built with phosphogypsum, the TFI risk assessment does show that risk to a future resident of the site might be acceptable depending on the methods used to construct the house;176

and accordingly,

that the risk to members of the public in the future is not above the acceptable risk, the redevelopment of any abandoned roads as anything other than a road constructed in accordance with this risk assessment should not be undertaken until an additional site-specific risk assessment demonstrates that risks to members of the public are acceptable.177

EPA stated it “remains concerned” about potential exposure should the road become abandoned, particularly for residences built on road material containing phosphogypsum, and “does not agree that TFI’s assumptions in its analysis of this scenario . . . could be relied upon to limit the potential risks to a future residential individual from such an occurrence.”178 EPA determined “this risk can be acceptably mitigated by including appropriate terms and conditions in the approval.” EPA stated that roads constructed with phosphogypsum may not be abandoned or used for other non-road purposes, and that any phosphogypsum removed from the stack but not used must be returned to the stack.179 EPA “questioned some of the modeling assumptions used by TFI to generate the estimate of the reclaimer . . . but based on new information and analysis in the revised request now concludes that risks associated with the reclaimer scenario can be addressed with conditions.”180

The request does not include information required by 40 C.F.R. §61.206(b)(3)-(5) and (10), regarding where the ultimate requested use will take place, including the roads or intermediary locations, or how much phosphogypsum will be used at each facility.181 EPA nonetheless concludes that given “the nature of the request and the conditions” imposed, that required information “is not essential to making the determination of whether the proposed use of PG [phosphogypsum] would be at least as protective of public health as stacking.”182 These conditions are (1) the average radium-226 content of phosphogypsum to be used in a road base or pavement must not exceed 35 pCi/g; (2) pavement may contain no more than 2.25% phosphogypsum by weight; (3) road base may contain no more than 50% phosphogypsum by weight; (4) road base containing phosphogypsum may consist of one lift of up to 25 cm-depth and not extend beyond paved areas of the road; and (5) a minimum 50-foot setback from the edge of the road to inhabited structures.183

On December 18, 2020, conservation and public health organizations, joined by a major workers union, petitioned the D.C. Circuit to review EPA’s approval.184 The same day, those same groups also directly petitioned EPA for reconsideration under CAA §307(d)(7)(B). On June 3, 2021, EPA withdrew, revoked, and rescinded its October 2020 approval of using phosphogypsum in roads because the petitioner did not provide the information required at 40 C.F.R. §61.206. EPA noted that its decision is without prejudice regarding any subsequent request that complies with 40 C.F.R. §61.206.

B. EPA’s Bevill Amendment Analysis

After a series of lawsuits imposing a deadline and requiring EPA to narrow the scope of its Bevill Amendment interpretation, EPA completed its study of phosphogypsum under RCRA and submitted the required report to Congress for 20 mineral processing special wastes, including phosphogypsum and process wastewater, in 1990.185 The

173. Arcadis, supra note 171, at 3-12, app. 1 at 10.
176. Id. at 18.
177. Id. at 20.
179. Id.
181. Id. at 3.
182. Id. at 4.
183. Id. at 7.
184. Center for Biological Diversity v. Environmental Protection Agency, No. 20-1506 (D.C. Cir. Dec. 18, 2020). [Editor’s Note: Jaclyn Lopez represents the Center for Biological Diversity (and co-plaintiffs) in this case.]
185. Concerned Citizens of Adamstown v. Environmental Protection Agency, No. 84-3041 (D.D.C. Aug. 21, 1985), imposed the deadline; Environmental Defense Fund v. Environmental Protection Agency (EDF II), 852 F.2d 1316. 18 ELR 21169 (D.C. Cir. 1988), held EPA can only apply the Bevill exclusion to wastes generated in high volume with low toxicity, in accordance with EPA’s original “special waste” concept, as opposed to all mineral processing wastes. REPORT TO CONGRESS, supra note 10; Special Wastes From...
study found widespread groundwater contamination at phosphogypsum stack sites, including contaminated off-site wells, the potential for drinking water source exposures, several documented damage cases that impacted both groundwater and surface waters and threatened and harmed aquatic life, increased air pathway cancer risk for those living near stacks, and varied and inadequate state regulation.186 Constituents of most concern that present a hazard to human health include radionuclides, arsenic, chromium, selenium, cadmium, radium-226, lead, vanadium, copper, antimony, thallium, fluoride, and selenium.187 The report also found an increased hazard and contaminant release potential should the industry expand in the absence of Subtitle C regulation.188

Nevertheless, due to costs to the industry in complying with a Subtitle C program, EPA’s determination published the following year exempted phosphogypsum and process wastewater (as well as all other special wastes) from Subtitle C regulation.189 The determination promised a Subtitle D solid waste program with tailored minimum federal guidelines for 18 of the special wastes, and announced the development and future promulgation of a TSCA regulatory program for phosphogypsum and process wastewater.190 EPA further stated it planned to use existing authorities under either RCRA \$7003 or the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)191 \$106 to address site-specific phosphogypsum and process wastewater groundwater contamination problems that pose substantial and imminent endangerment to human health or the environment.192

As part of its development of a TSCA regulatory program, EPA chartered the Phosphoric Acid Waste Dialogue Committee under the Federal Advisory Committee Act in 1992 to determine whether TSCA could effectively regulate phosphoric acid wastes.193 According to a later EPA report as part of EPA’s 1998 Phase IV Land Disposal Restriction rulemaking, the dialogue committee could not identify any feasible in-plant process changes that would significantly reduce the volume and/or toxicity of phosphogypsum or phosphoric acid process wastewater.194 The exact nature of the dialogue committee’s activities, including which process changes were considered and what criteria were used to determine feasibility, remain unknown, as EPA has acknowledged that the dialogue committee’s report is “missing” from its document collection, perhaps destroyed in a basement flood with no available duplicate copies.195 Nevertheless, somehow finding that TSCA regulation would not be possible, EPA decided it would revisit the 1991 Bevill regulatory determination and determine whether RCRA Subtitle C regulation of phosphoric acid special wastes remained inappropriate.196

Following the conclusion of the dialogue committee, EPA evaluated the environmental risks posed by phosphogypsum and process wastewater at 13 Florida sites by applying the RCRA National Corrective Action Prioritization System to each site.197 The results showed that all 13 facilities evaluated had groundwater contamination and all 13 would qualify as “high priority.”198 Despite this, EPA to date has neither revised its Bevill determination for phosphogypsum and process wastewater, nor initiated any rulemakings under TSCA concerning phosphogypsum and process wastewater.

C. U.S. Army Corps of Engineers’ Refusal to Evaluate Impacts of Phosphogypsum

Between 2010 and 2011, the U.S. Army Corps of Engineers (the Corps) received four applications from phosphate companies for permits to dredge and fill 51,000 acres of wetlands, watersheds, and habitat across large areas of DeSoto, Hardee, Hillsborough, Manatee, and Polk, Counties in Florida to mine 823 million tons of phosphate rock for fertilizer production over the next few decades.199 The Corps “determined that, when viewed collectively, the separate proposed phosphate mining projects have similarities that provide a basis for evaluating their direct, indirect, and cumulative environmental impacts in a single Area-wide Environmental Impact Statement.”200

Despite numerous and repeated requests from EPA, local municipalities, and the general public, the Corps refused to analyze phosphogypsum, the reasonably foreseeable indirect effect of phosphate mining.201 The applicant and
the Corps explicitly tied the application to dredge wetlands to mine phosphate to the applicant’s fertilizer plants. In its permit application, the applicant averred the viability of its fertilizer plants “is dependent upon the ability to continue phosphate mining, which in turn depends on issuance of the pending 404 permit applications.”

Conservation groups filed a lawsuit challenging the Corps’ failure to analyze the production and storage of phosphogypsum in its NEPA analysis. The plaintiffs argued the Corps violated NEPA and the Administrative Procedure Act by ignoring the indirect and cumulative environmental effects of phosphogypsum production and storage in its NEPA analysis. They argued that the applicant’s production of phosphogypsum was the foreseeable result of mining phosphate ore that would not occur but for the permittee’s mining practices, and that NEPA therefore demands that the Corps take a “hard look” at the significant effects of the phosphate mine and phosphogypsum, including the indirect and cumulative impacts. They argued that phosphogypsum production and storage would not occur but for the Corps’ permitting, and, hence, are among the “indirect effects” of phosphate mining. They alleged the applicant operates its fertilizer plants near its mines, and many of the plants have been built on mined-out land. They argued that it was the fertilizer plants that actually met the Corps’ stated “purpose and need” of the mines (i.e., to create fertilizer), and the plants also produce the radioactive phosphogypsum.

Four appeals courts, including the D.C. Circuit, the U.S. Courts of Appeals for the Eighth Circuit, the U.S. Courts of Appeals for the Ninth Circuit, and the U.S. Courts of Appeals for the Tenth Circuit, had reached similar conclusions in cases involving mining approvals, directing federal agencies to consider downstream effects such as the transportation and processing of mined ore and the greenhouse gas emissions from mined coal. These courts and their lower district courts have consistently held that these types of downstream effects fall within the scope of indirect impacts that should be reviewed under NEPA as “reasonably foreseeable.”

For example, in Sierra Club v. Federal Energy Regulatory Commission (Sabal Trail), the D.C. Circuit held that the Federal Energy Regulatory Commission (FERC) violated NEPA by failing to analyze the burning of natural gas, a greenhouse gas, transported by the Sabal Trail natural gas pipeline, finding, “greenhouse-gas emissions are an indirect effect of authorizing this project, which FERC could reasonably foresee, and which the agency has legal authority to mitigate.” In making this finding, the court reasoned:

> It’s not just the journey, though, it’s also the destination. All the natural gas that will travel through these pipelines will be going somewhere: specifically, to power plants in Florida, some of which already exist, others of which are in the planning stages. Those power plants will burn the gas, generating both electricity and carbon dioxide. And once in the atmosphere, that carbon dioxide will add to the greenhouse effect, which the EIS describes as “the primary contributing factor” in global climate change.

Plaintiffs argued that like FERC in Sabal Trail, the Corps was charged with balancing “the public benefits against the adverse effects of the project . . . including adverse environmental effects,” and that like FERC, the Corps had the authority to condition or deny a permit “on the ground that [it] would be too harmful to the environment,” making the agency the “legally relevant cause” of the direct and indirect environmental effects of the project it approves.

The Ninth Circuit had likewise held that downstream activities that affect the human environment should be considered indirect effects under NEPA. In South Fork Band Council of West Shoshone of Nevada v. U.S. Department of the Interior, the Ninth Circuit explained that “[i]t he air quality impacts associated with transport and off-site processing of the five million tons of refractory ore are prime examples of indirect effects that NEPA requires be considered.” Applying this authority, many district courts in the Ninth Circuit have reached similar holdings.

For instance, in WildEarth Guardians v. U.S. Bureau of Land Management, the Tenth Circuit concluded that an EIS unlawfully failed to review impacts from coal combustion emissions.

202. Id. at 1371.
203. Id. at 1373 (quoting Minisink Residents for Envtl Pres. & Safety v. Federal Energy Regul. Comm’n, 762 F.3d 97, 101-02, 44 ELR 20190 (D.C. Cir. 2014)).
204. Id. at 1373, 1375 (holding that even though the power plants will be subject to “state and federal air permitting processes,” “the existence of permit requirements overseen by another federal agency or state permitting authority cannot substitute for a proper NEPA analysis”).
205. 588 F.3d 718, 725, 39 ELR 20276 (9th Cir. 2009) (finding the Bureau of Land Management failed to evaluate the environmental impacts of transporting and processing one at a facility 70 miles away); see also North Plains Res. Council, Inc. v. Surface Transp. Bd., 668 F.3d 1067, 1077-79 (9th Cir. 2011) (finding EIS for railroad line failed to review cumulative impacts from coal mine that would utilize the rail line).
207. 870 F.3d 1222, 1233-40, 47 ELR 20115 (10th Cir. 2017).
Office of Legacy Management, the U.S. District Court for the District of Colorado found an agency unlawfully failed to consider the indirect effects of processing ore that would be mined with agency-issued permits.216 As in Colorado Environmental Coalition, the Corps here has failed to consider the indirect effects of processing the phosphate ore that would be mined with Corps-issued CWA permits.217 The same is true for the Eighth Circuit.218

The U.S. District Court for the Middle District of Florida determined “it was reasonable for the Corps to conclude that the environmental effects of phosphogypsum production and storage fell outside the scope of its NEPA review.”219 Plaintiffs-appellants appealed to the U.S. Court of Appeals for the Eleventh Circuit.220 In a split decision authored by Judge John Rogers, the majority, over a strong dissent by Judge Beverly Martin, held that (1) “even if the Corps’ permit is a but-for cause of those effects, it is not a proximate—or legally relevant—cause”; (2) “because the Corps lacks the authority to regulate phosphogypsum wholesale, the ‘rule of reason’ instructs that the Corps need not consider its effects”; and (3) “the Corps’ scoping decision is consistent with its own regulations, the Corps’ interpretation of which is entitled to deference.”221

Judge Martin dissented on the grounds that the ruling runs counter to Public Citizen and limitations on Auer deference, and eviscerates NEPA’s requirements insofar as they bear on the consideration of foreseeable indirect effects. However, as it stands, the Corps is not required to analyze, much less regulate, the phosphogypsum that results from the phosphate mining it authorizes.222

IV. Environmental Justice Demands EPA Regulate Phosphogypsum

There have been numerous documented phosphogypsum stack failures throughout the United States. Even phosphogypsum stacks that do not have massive, unpermitted failures routinely violate their permit conditions. As a result, phosphogypsum and process wastewater are hazardous wastes that present a substantial risk to the environment and nearby communities. Unfortunately, these phosphogypsum stacks are near vulnerable communities and sensitive environments. EPA must regulate phosphogypsum and process wastewater as hazardous under RCRA and regulate them as high-priority chemical substances under TSCA.

A. Phosphogypsum and Process Wastewater Are Hazardous Wastes

While the Bevill Amendment only requires one study and report to Congress for each special waste,223 nothing precludes EPA from conducting additional study or revisiting the initial determination at a later date when more information about the present and potential hazard becomes known. Indeed, EPA has repeatedly acknowledged its authority to reverse its Bevill determination, starting with the notice publishing the determination itself: “If information obtained or findings developed . . . are such that RCRA could better handle this matter, the Agency will revisit today’s regulatory determination, and determine whether subtitle C regulation of the phosphoric acid special wastes remains inappropriate.”224

EPA next suggested it would revisit its Bevill regulatory determinations for certain “high-risk” mining wastes in a 1997 rulemaking on various mining waste issues. EPA cited concern about “environmental and natural resource damages from acid mine drainage, the use of cyanide and other toxic chemicals, radioactivity, stability of tailings and waste rock piles, and in-situ mining methods.”225

In 2010, after a breach in an impoundment pond at the Tennessee Valley Authority’s Kingston, Tennessee, power plant released 1.1 billion gallons of coal ash slurry, EPA revisited its May 2000 Bevill determination excluding coal combustion residuals (CCR) from Subtitle C requirements. EPA proposed a reversal of its Bevill determination and regulation under Subtitle C, or, in the alternative, minimum federal standards under Subtitle D.226 Multiple,

218. Mid States Coal. for Progress v. Surface Transp. Bd., 345 F.3d 520, 548-50 (8th Cir. 2003) (holding that the agency was required to consider impacts from burning coal when reviewing a proposed railway access and transportation of the coal even though the power plants using the coal were hundreds of miles away).
220. Center for Biological Diversity v. U.S. Army Corps of Eng’rs, 941 F.3d 1288, 50 ELR 20176 (11th Cir. 2019). [Editor’s Note: Jaclyn Lopez represented the Center for Biological Diversity (and co-plaintiffs) in this case.]
221. Id. at 1294.
222. Id. at 1306-15.
226. Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From Electric

2-2022 ENVIRONMENTAL LAW REPORTER 52 ELR 10139
similar large-volume releases have occurred in the phosphoric acid production waste context since EPA’s 1991 Bevill regulatory determination.

Further, RCRA and its implementing regulations are designed to prevent harm caused by solid and hazardous wastes, and to adequately protect human health and the environment by ensuring these wastes are properly managed and disposed of in the first place. EPA cannot continue to ignore this mandate by pointing to authority to enforce corrective action cleanup or abatement orders after the harm has already occurred (i.e., remediation of site-specific groundwater contamination) under a higher imminent and substantial endangerment standard. EPA must ensure proper management and disposal of phosphogypsum and process wastewater under RCRA Subtitle C by reversing its Bevill determination and listing the wastes as hazardous before looking to future corrective actions, as said corrective actions would not be necessary if the waste were properly and safely managed.

RCRA regulations provide that a solid waste not excluded from regulation as a hazardous waste may be designated as a listed “toxic waste” (hazardous waste with toxic constituent(s)) or a “characteristic hazardous waste.”227 The solid waste may be listed as a toxic waste if (1) it contains a toxic constituent listed in Appendix VIII to 40 C.F.R. §261 and (2) an analysis of 11 enumerated factors supports a conclusion that the waste is “capable of posing a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported or disposed of, or otherwise managed.”228 A “characteristic hazardous waste” must exhibit one of the four following hazardous waste characteristics: ignitability, corrosivity (as determined by pH), reactivity, or toxicity (as determined by a leaching test).229

Long-term exposure to fine particulate matter adversely affects the respiratory and cardiovascular systems and otherwise increases mortality risk.230 For instance, particulate matter exposure is associated with an increased risk of COVID-19 death in the United States, with an increase of only 1 microgram per cubic meter (µg/m³) associated with an 8% increase in the COVID-19 death rate.231 Phosphogypsum contains toxic constituents, including particulate matter, and as such is capable of posing substantial hazards. Process wastewater also exhibits the characteristics of corrosivity and toxicity, satisfying the criteria for designation as a characteristic hazardous waste as well.232

1. Phosphogypsum Stacks Contain Toxic Constituents

Active phosphogypsum stacks are entirely uncovered, open-air dumps. Even inactive portions of active stacks can remain uncovered until stack closure, when a vegetated cover is finally installed.233 Phosphogypsum stacks with a soil cover of just 0.5 m of dirt would emit less radon (6 pCi/m²-s) than the current management practice of no soil cover (up to 20 pCi/m²-s).234 EPA has already concluded that phosphogypsum stacks pose a considerable air pathway cancer risk as a result of radon emissions.235 In addition, disturbed phosphogypsum (e.g., construction vehicles driving over the stacks and removing the crust) and wind erosion cause fugitive dust emissions.236 These dust emissions provide an inhalation pathway for toxic constituents within phosphogypsum particles, including arsenic, chromium, and radionuclides.237 Combining the risk from radon inhalation from the stacks themselves with the risks of radionuclide, arsenic, and chromium-containing particle inhalation, EPA estimated a total air pathway lifetime maximally exposed individual cancer risk of approximately \(9 \times 10^{-5}\).238

Phosphogypsum leachate contains the following toxic constituents listed in Appendix VIII to 40 C.F.R. §261: arsenic, lead, nickel, cadmium, chromium, silver, antimony, copper, mercury, and thallium,239 with concentrations of arsenic and chromium in phosphogypsum solids also exceeding EPA’s health-based screening criteria in 1990.240 Despite high migration potential of contaminants within phosphogypsum and process water, neither is treated to remove impurities like radionuclides or heavy metals either while active or at time of closure. Process water is only treated by double-liming,241 or in some cases
reverse osmosis, when release is necessary to maintain surge capacity or to prevent an uncontrolled release.242

❑ Arsenic. Arsenic is a protoplastic poison causing malfunctioning of cell respiration, cell enzymes, and mitosis.243 Several studies have noted an association between chronic exposure to high levels of arsenic and lung cancer in occupationally exposed subpopulations.244 Prolonged ingestion of water contaminated with arsenic may result in the manifestations of toxicity in practically all systems of the human body.245 Chronic oral exposure to inorganic arsenic causes a pattern of skin changes associated with changes in the blood vessels of the skin, including patches of darkened skin and the appearance of small “corns” or “warts” on the palms, soles, and torso.246 Ingesting arsenic has been recognized as a poison to living organisms,251 with negative effects on general health, reproduction, and behavior.252 The Department of Health and Human Services has determined that inorganic arsenic is known to be a human carcinogen.250

❑ Lead. Toxic effects of chronic lead exposure have been observed in every human organ system that has been rigorously studied.248 Adverse neurological, renal, cardiovascular, hematological, immunological, reproductive, and developmental effects, especially in children, have been observed at low measured blood levels (PbB) of less than 5 μg per day (μg/d).249 The Centers for Disease Control and Prevention states that “no safe blood lead level in children has been identified.”250 The Department of Health and Human Services classifies lead and lead compounds as reasonably anticipated to be human carcinogens and lead has long been recognized as a poison to living organisms,251 with negative effects on general health, reproduction, and behavior.252 Lead was highlighted as an important cause of mortality in wildlife populations in the late 1950s when ingestion of spent hunting lead pellets was recognized to cause death in a wide range of wild waterfowl.253 Reports of poisoned wildlife have continued frequently since that time.254 Various authors have attempted to define tissue concentrations in birds indicative of excessive lead exposure, sublethal poisoning, and acute poisoning,255 but there is no definitive consensus on “background” lead levels for wild birds. Long-lived animals are particularly susceptible to bioaccumulation of lead in bone tissues, and repeated lead ingestion and accumulation in long-lived species can reduce bone mineralization, which could mean an increase in bone fragility.256

❑ Nickel. In nickel-sensitized individuals representing approximately 10%-20% of the general population, dermal contact with a small amount of nickel or oral exposure to fairly low doses of nickel can result in dermatitis.257 Occupational exposure to airborne nickel has caused chronic bronchitis, reduced lung function, and cancer of the lung and nasal sinus.258 The Department of Health and Human Services has determined that metallic nickel may reasonably be anticipated to be a human carcinogen.259

❑ Cadmium. Long-term exposure to cadmium through air, water, soil, and food leads to cancer and organ system toxicity such as skeletal, urinary, reproductive, cardiovascular, central and peripheral nervous, and respiratory systems.260 Breathing air with very high levels of cadmium can severely damage the lungs, and may cause death.261 Chronic exposure to low levels of cadmium in the air results in a buildup of cadmium in the kidneys and may result in kidney disease.262 Damage to the lungs and nasal cavity has been ob-

256. Laura Gangoso et al., Long-Term Effects of Lead Poisoning on Bone Mineralization in Vultures Exposed to Ammunition Sources, 57 ENV’T POLLUTION 569 (2009).
258. Id.
259. Id. at 6.
262. Id.
served in animals exposed to cadmium in the air.263 Lung cancer has been found in some studies of workers exposed to cadmium in the air and studies of rats that breathed in cadmium.264 Eating food or drinking water with very high cadmium levels severely irritates the stomach, leading to vomiting and diarrhea, and sometimes death.265

Chronic ingestion of cadmium can lead to a buildup of cadmium in the kidneys and kidney disease.266 Chronic exposure to low levels of cadmium can also cause bones to become fragile and break easily.267 Animal studies indicate that the young are more susceptible than adults to a loss of bone and decreased bone strength from exposure to cadmium.268 Kidney and bone effects have also been observed in laboratory animals ingesting cadmium, as well as anemia, liver disease, and nerve or brain damage.269 The Department of Health and Human Services has determined that cadmium and cadmium compounds are known human carcinogens.270

Cadmium is toxic and has no biological function in living organisms.271 It causes both acute and sublethal effects, and is toxic at low concentrations to plants, fish, birds, mammals (including humans), and microorganisms.272 In a 2005 study that compared acute toxicity of 63 heavy metals to a widespread crustacean found in both fresh and brackish water (\textit{Hyalella azteca}), cadmium was the most toxic.273 It bioaccumulates in all levels of the food chain in both aquatic and terrestrial organisms.274

- **Chromium.** The primary effects associated with exposure to chromium(VI) compounds are respiratory, gastrointestinal, immunological, hematological, reproductive, and developmental, while the primary effects associated with exposure to chromium(III) compounds are on the respiratory and immunological systems.275 Numerous epidemiological studies recognizing the association between chromium inhalation and lung cancer have been published since the 1940s.276 The International Agency for Research on Cancer has determined that chromium(VI) compounds are carcinogenic to humans.277 Both chromium and arsenic, which exceeded EPA's health-based screening criteria for phosphogypsum solids in 1990, bioaccumulate in aquatic species.278

- **Silver.** Silver compounds can cause some areas of the skin and other body tissues to turn gray or blue-gray, a permanent condition known as “argyria.”279 Argyria occurs in people who eat or breathe in silver compounds over a long period of several months to years.280 Exposure to dust containing relatively high levels of silver compounds may cause breathing problems, lung and throat irritation, and stomach pain.281

- **Antimony.** Electrocardiogram alterations were found in about 50% of the workers exposed to antimony compounds.282 Other health effects that have been observed in animals orally exposed to higher doses of antimony include hepatocellular vacuolization, hematological alterations including decreases in red blood cell counts and hemoglobin levels, and histological alterations in the thyroid.283

- **Copper.** Long-term exposure to copper dust can irritate the nose, mouth, and eyes, and cause headaches, dizziness, nausea, and diarrhea.284 Water that contains higher than normal levels of copper may cause vomiting, stomach cramps, or diarrhea.285 Intentionally high intakes of copper can cause liver and kidney damage and even death.286

- **Mercury.** The nervous system is highly sensitive to mercury.287 Some people who eat fish contaminated with large amounts of methylmercury or seed grains treated with methylmercury or other organic mercury compounds developed permanent damage to the brain and kidneys.288 Permanent damage to the brain has also been shown to occur from exposure to sufficiently high levels of metallic mercury.289 The kidneys are also sensitive to the effects of mercury, because mercury accumulates in the kidneys and causes higher exposures to these tissues, and thus more

263. Id.
264. Id. at 5.
265. Id.
266. Id.
267. Id.
268. Id. at 6.
269. Id. at 5.
270. Id.
272. Id.
273. Uwe Borgmann et al., Toxicity of Sixty-Three Metals and Metalloids to \textit{Hyalella Azteca} at Two Levels of Water Hardness, 24 Env't Toxicology & Chemistry 641 (2005).
274. TOXICOLOGICAL PROFILE FOR CADMIUM, supra note 261.
277. TOXICOLOGICAL PROFILE FOR CHROMIUM, supra note 275, at 4.
278. Valerie Canivet et al., Toxicity and Bioaccumulation of Arsenic and Chromium in Epigean and Hypogean Freshwater Macroinvertebrates, 40 Archives Env’t Contamination & Toxicology 345 (2001), https://link.springer.com/article/10.1007/s002440010182.
280. Id.
281. Id.
283. Id.
285. Id.
286. Id. at 7.
287. Id.
288. Id.
damage. All forms of mercury can cause kidney damage if large enough amounts enter the body.

Thallium. Thallium can affect the human nervous system, lung, heart, liver, and kidney if large amounts are eaten or drunk for short periods of time. Temporary hair loss, vomiting, and diarrhea can also occur, and death may result after exposure to large amounts of thallium for short periods. Thallium can be fatal from a dose as low as 1 g. The Agency for Toxic Substances and Disease Registry reports no information was found on health effects in humans after exposure to smaller amounts of thallium for longer periods. As in humans, animal studies indicate that exposure to large amounts of thallium for brief periods of time can damage the nervous system and heart and can cause death. Animal reproductive organs, especially the testes, are damaged after drinking small amounts of thallium-contaminated water for two months.

The concentrations of these toxic constituents vary from stack to stack according to the source phosphate ore processed. Concentrations of chromium and arsenic exceeded EPA’s health-based risk screening criteria for inhalation in the 1990 study, meaning these constituents could pose a significant (i.e., greater than 1×10^{-5}) risk if phosphogypsum were released to the ambient air as particles. Concentrations of arsenic also exceeded EPA’s health-based risk screening criteria for ingestion.

Process wastewater also exhibits the corrosivity and toxicity characteristics. Process wastewater is measured with pH values typically lower than 2, and as extreme as 0.5 (battery acid has a pH of around 1). Concentrations of cadmium, chromium, and selenium in process wastewater exceeded extraction procedure (EP) regulatory levels in 1990. And all of the toxic constituents in phosphogypsum are metals or other inorganics that do not degrade.

Moreover, the metal and nonmetal ions in phosphogypsum are highly mobile when leached due to the acidity of process water, indicating a strong potential for groundwater contamination. Heavy metals are persistent in the environment. Once groundwaters in karst geological terrains like those in Florida are contaminated with toxic phosphogypsum constituents by large-scale pollution events like sinkholes forming within a phosphogypsum stack, they are difficult if not impossible to remediate due to uncertainty in the fate and transport of contaminants after sinkhole collapse, and a need for a better understanding of karst processes and characterization of fast-moving conduit flow patterns.

2. Phosphogypsum and Process Wastewater Pose a Substantial Hazard to Human Health or the Environment

Phosphogypsum and process wastewater presently pose a substantial hazard to human health or the environment as a result of improper treatment, storage, and disposal. In addition to containing toxic, heavy metals, phosphogypsum and process wastewater are radioactive. Phosphogypsum has very high levels of gross alpha and beta radiation (10 to 100 pCi/g) relative to levels in typical soils (approximately 1 pCi/g). Radium-226 concentrations in U.S. phosphogypsum samples have measured as high as 49 pCi/g. EPA has repeatedly compared phosphogypsum stacks to uranium mill tailing impoundments in both size and radiation exposure. Yet, uranium byproduct materials are managed under standards—in place since 1983—that are identical to Subtitle C standards for hazardous waste treatment, storage, and disposal facilities, while state-managed phosphogypsum stack designs, according to EPA, do not even “approach the protectiveness of the uranium mill tailings standards.”

Sanjay Sahu et al. found that phosphate ore processing and disposal of phosphogypsum contributes to enhanced levels of natural radionuclides and heavy metals in the environment, and that the resulting environmental impact should be considered carefully to ensure safety. They found that gypstacks can cause serious environmental contamination of soils, water, and the atmosphere through gypstack erosion and the release of heavy metals, sulphates, fluorosilicates, hydrogen fluorides, phosphorus, cadmium, and radium-226.

Alicja Boryło and Bogdan Skwarzec found elevated levels of metals in plants nearby phosphogypsum stacks, some higher than permissible levels in food. They calculated that the factor contamination for the plants were 2.1 for lead, 3.7 for zinc, 2.8 for nickel, and 3.2 for iron for green parts, to 11.8 for lead, 12.2 for zinc, 9.4 for nickel, and 5.5

290. Id.
291. Id.
293. Id.
294. Id.
295. Id.
296. Id.
297. REPORT TO CONGRESS, supra note 10, at 12-7.
298. Id.
299. Id. at 12-58.
300. The EP test has since been replaced by the more rigorous TCLP test. 40 C.F.R. §261.24(a) (2020).
301. REPORT TO CONGRESS, supra note 10, at 12-1.
for iron in the roots near phosphogypsum stacks in comparison to non-contaminated plants. They concluded that the subject gypstack may pose a health risk to the local population through consumption of the vegetables.

Boryło et al. found elevated levels of polonium and lead in soil near a phosphogypsum stack. They theorized that heavy rainfall for a long time may cause infiltration of radionuclides from phosphogypsum stacks to nearby soils and waterways. Lina Al Attar et al. found elevated levels of fluoride in air and soil sampling near phosphogypsum stacks. Eduardo Da Silva et al. found that where phosphate was mined and processed (where phosphogypsum was created) cadmium was enriched 105-208 times and uranium was enriched 18-44 times. That study also found a general trend of an increase in heavy metals content with decreasing particle size.

On June 24, 2021, conservation groups filed a lawsuit against Florida Gov. Ron DeSantis, the FDEP, HRK Holdings, and the Manatee Port Authority, alleging that Piney Point "presents an imminent and substantial endangerment to Floridians' lives, health, and environment" after the FDEP authorized the discharge of process wastewater into Tampa Bay to avert a catastrophic failure of the phosphogypsum stack. On August 5, 2021, the FDEP likewise filed a complaint against the owner of Piney Point requesting a court-appointed receiver. A few weeks later, a judge approved an order appointing a receiver over Piney Point following a motion for an emergency hearing, citing "HRK's continuing failure in its duty to ensure adequate water management by providing sufficient storage capacity at the Site to prevent flooding, overtopping of lined areas, and uncontrollable or untreated discharges." Phosphogypsum stack mismanagement is not only plausible, but numerous documented damage cases have already occurred. Phosphogypsum stacks are built in sinkhole-prone areas atop drinking water sources (see Figure 1). These gypstacks are lined by a single high-density polyethylene liner, which often tears, allowing the acidic process water to penetrate the phosphogypsum stack.

Since EPA's Bevill determination, there have been three reported major sinkholes underneath phosphogypsum stacks, releasing millions of gallons of untreated process wastewater and an undetermined amount of phosphogypsum into the Floridan aquifer: the 1994 sinkhole beneath a phosphogypsum stack at the New Wales facility in Mulberry, releasing 215 million gallons of process wastewater; the 2009 sinkhole beneath a phosphogypsum stack just 1.25 miles away from the 1994 original sinkhole at the New Wales facility in Mulberry, releasing 215 million gallons of process wastewater. Despite the proven geological instability of the area, the FDEP recently issued a permit to expand the New Wales phosphogypsum stack facility by more than 230 acres. A few days later, seismic monitoring of surface conditions at the south phosphogypsum stack led the FDEP to conclude "the presence of a subsurface condition that has the potential to adversely affect the integrity of the phosphogypsum stack." All states containing phosphogypsum stacks have adopted the federal exclusion from hazardous waste regulations, and therefore do not require double liners with double leachate detection and collection systems above and between the liners. While Florida's Phosphogypsum Management Rule now requires stacks to be lined with a single composite liner, the state of Florida allowed phosphate to be deposited in unlined stacks until March 25, 2001. Louisianans consider phosphogypsum stacks to be solid waste landfills and has no regulations specific to phospho-

80 million gallons of process wastewater; the 2009 sinkhole beneath a phosphogypsum stack at the PCS facility in White Springs, releasing 84 million gallons of process wastewater; and, most recently, the 2016 sinkhole beneath a phosphogypsum stack just 1.25 miles away from the 1994 original sinkhole at the New Wales facility in Mulberry, releasing 215 million gallons of process wastewater.

All states containing phosphogypsum stacks have adopted the federal exclusion from hazardous waste regulations, and therefore do not require double liners with double leachate detection and collection systems above and between the liners. While Florida’s Phosphogypsum Management Rule now requires stacks to be lined with a single composite liner, the state of Florida allowed phosphate to be deposited in unlined stacks until March 25, 2001. Louisianans consider phosphogypsum stacks to be solid waste landfills and has no regulations specific to phospho-

315. Id.
316. Id.
317. Id.
3. Phosphogypsum Stacks Are Near Vulnerable Communities and Sensitive Environments

Systemic and pervasive racism in America has resulted in significant environmental injustices affecting the health of vulnerable communities.\(^\text{324}\) Air pollution is of particular concern as low-wealth and BIPOC communities live nearer to urban sources of pollution than other segments of society.\(^\text{325}\) Phosphogypsum stacks produce radon, a radioactive gas. Radon exposure is the second leading cause of lung cancer in the United States behind cigarette smoking, killing 15,000-22,000 people per year.\(^\text{326}\)

There is no known safe level of exposure to radon,\(^\text{327}\) but to control the dispersion of phosphogypsum and the resultant release of radon gas (a decay product of radium-226 found in phosphogypsum) to ambient air, EPA mandates that once created, phosphogypsum must be disposed in stacks such that the radon emission is limited to a level of 20 pCi/lm\(^2\)-s.\(^\text{328}\) This method of disposal is the least bad option, for if dispersed throughout the country, phosphogypsum would present a public health threat from radon gas emissions that would continue for generations given radium-226's 1,600-year half-life; and it would be impractical if not impossible for EPA to implement regulation of such numerous and diffuse sources.\(^\text{329}\)

In 1992, EPA finalized its national emission standards for radon emissions from phosphogypsum stacks, finding that “regardless of the radium-226 concentration, the use of phosphogypsum in road construction always resulted in a MIR significantly greater than the presumptive safe level. . . . Therefore, EPA has determined that the use of phosphogypsum in road construction presents an unacceptable level of risk to public health.”\(^\text{330}\) EPA also found that phosphogypsum “contains appreciable quantities of radium-226, uranium, and other uranium decay products . . . The radionuclides of significance are uranium-238, uranium-234, thorium-230, radon-222, lead-210, [and] polonium-210,”\(^\text{331}\) and that these toxins can be resuspended into the air by wind and vehicular traffic. It found that trace metals may also be leached from phosphogypsum, as are radionuclides, and migrate to nearby surfaces and groundwater resources, that chromium and arsenic may also pose a significant health risk, and that a “number of potential constituents in phosphogypsum from some facilities . . . may cause adverse effects or restrictions of potential uses of nearby surface and groundwater resources” such as arsenic, lead, cadmium, chromium, fluoride, zinc, antimony, and copper.\(^\text{332}\)

Many of the nation’s 70 phosphogypsum stacks are near low-wealth and BIPOC communities (see Figures 2-4). Some of these communities are also vulnerable to sea-level rise. And some appear to be built on weak soils, further threatening nearby residents and the environment. Several phosphogypsum stack owners have gone bankrupt, leaving the communities and local governments to fend for themselves.

The proximity of massive volumes of phosphogypsum and process wastewater to vulnerable communities is an environmental injustice. African Americans are 75% more likely than other Americans to live in “fence-line” communities near industrial facilities, including those that produce hazardous waste, and are directly affected by the facilities’ operation.\(^\text{333}\) The injustice presented by phosphogypsum and process wastewater is made all the worse by the fact that the hazardous wastes stored near these communities are not currently managed in RCRA-permitted hazardous waste treatment, storage, and disposal facilities with strict manifest and land disposal requirements, but

320. LA. ADMIN. CODE tit. 33, SN.1 (2020).
323. REPORT TO CONGRESS, supra note 10, at 12-34 to 12-35.
329. Id.
332. Id.
rather in underregulated open air stacks that emit radon and are prone to large-volume releases. Mosaic Fertilizer installed four mechanical evaporators in 2019 at its New Wales facility in order to increase process wastewater evaporation and help maintain a negative process wastewater balance. However, Mosaic has been unable to determine the amount of process wastewater evaporated in this way due to “numerous operational and climatic inputs and outputs.” The Florida Department of Environmental Protection (FDEP) authorized the use of these evaporators through the national pollutant discharge elimination system (NPDES) and Title V air permit modifications without reviewing any industrial notification of completion of construction—spray evaporator system, Mosaic Fertilizer, LLC—New Wales Facility, FDEP Permit #MMR_FL0036421 (Nov. 18, 2019).

For example, the active phosphogypsum stack at Mosaic’s Riverview facility south of Tampa currently sits adjacent to the historically Black community of Old Progress Village (Progress Village). Progress Village was designed in the 1950s as a means to provide home ownership to Tampa’s segregated Black residents, who lived primarily in housing projects and were purposefully displaced by construction of an interstate. The community learned in 1982 of then-owner Gardiner’s plans to build a second phosphogypsum stack, this time across the street from Progress Village and near a school, and fought hard to stop the company from obtaining its necessary local permit. Community members organized petitions and protests, and showed up in large numbers to several county commission meetings over the course of the next two years. At one meeting, a resident voiced:

What do you tell people 15 or 20 years from now when someone wants to know who let a company put two mountains of waste within the city limits of Tampa? How do you tell the next generation that we have messed up again? What do I tell my grandkids? Will their mother and father let them visit me? What do I do when I retire? I won’t have the funds to move to the mountains or some resort area or take extended vacations in Europe. No, Mr. and Mrs. Commissioners. I’ll be stuck with that gypsum pile the rest of my life. So, I appeal to you as God-fearing and law-

334. Notification of Completion of Construction—Spray Evaporator System, Mosaic Fertilizer, LLC—New Wales Facility, FDEP Permit #MMR_FL0036421 (Nov. 18, 2019).
335. Mosaic Fertilizer, LLC, Quarter 1 Spray Evaporation Report—New Wales Facility, FDEP Permit #MMR_FL0036421 (Apr. 28, 2020).
337. Letter from Louisiana Department of Environmental Quality to Mosaic Fertilizer, LLC Re: Water Management Options at the Mosaic Fertilizer, LLC—Uncle Sam Facility (July 30, 2019).
339. Id. at 71.
abiding citizens. Please for one time give us a break. Let the little people win one. We already have an ammonia pipeline running through Progress Village that could burst anytime. We don’t need to be subjugated to another hazard. Vote no against the gypsum pile proposal.

The “little people” did not win, and Hillsborough County commissioners approved the proposal in 1984. Gardiner entered into an agreement with Progress Village leaders that year providing mostly short-term beautification benefits and a scholarship program. There is some dispute if the agreement was necessary to gain county approval for stack construction or if it was merely a side deal aimed at bettering community relations. Little remains of the benefits promised, but the growing radioactive, hazardous mountain will remain forever. EPA reports that within a three-mile radius, 60% of the population are “people of color” and 44% are low-income.

Meanwhile, across the Gulf of Mexico, Mosaic Fertilizer’s Uncle Sam facility is located in an infamous 85-mile stretch of industrial area in southern Louisiana containing 150 facilities, known as Cancer Alley due to its increased cancer rates when compared to the rest of the nation. The population of Convent, where the stack is located, is 62.20% Black, with average annual earnings of $35,667. EPA reports that within a three-mile radius, 39% of the population are “people of color” and 29% are low-income.

This community is now facing the consequences of an inadequately regulated stack system that has been permitted to grow too large and unstable given the weak nature of Louisiana soils noted by EPA three decades ago; the north slope of the facility’s No. 4 phosphogypsum stack has been moving laterally since at least January 9, 2019. The state’s review of the root cause determined that a five- to 10-foot zone of under-consolidated, interbedded weak organic and marine clay, ignored at the time of stack design, is at fault. In 1990, EPA considered Louisiana phosphogypsum stacks higher than 12 m (40 feet) to be unstable due to the weak nature of Louisiana soils. Yet because of inadequate federal oversight, the Uncle Sam stack is now nearing 60 m (200 feet), and is predictably unstable.

In response, Mosaic has been shifting its process wastewater inventory from the pond atop the stack to other nearby ponds in an attempt to both relieve pressure caused by the weight of the process wastewater on the northern slope and to mitigate the damage caused in the plausible event of a collapse and resulting release of process wastewater from the pond onto adjacent agricultural fields and the surrounding community. To date, however, the stack slope containing millions of gallons of process wastewater is still moving and threatening collapse.

These issues are not unique to the Southeast. In the 1980s, EPA discovered elevated levels of heavy metal in monitoring wells in the deep confined aquifer at the Simplot plant. EPA later classified the plant part of the Eastern Michaud Plats Superfund site near Pocatello, Idaho, though it was permitted to remain an active operating facility. The plant is the source of pollution of the nearby area, including Shoshone-Bannock tribal lands. EPA reports that within a three-mile radius, 37% of the people are low-income, and the Shoshone-Bannock Tribes of the Fort Hall Reservation are less than one-half-mile away.

In May 2018 testimony to Congress on a bill regarding a land exchange, the chairman of the Shoshone-Bannock Tribe’s Fort Hall Business Council said:

[J.R.] Simplot continues to process phosphates at its Pocatello Don Plant, which is located adjacent to the Reservation within our ceded lands where we have vested treaty property rights to hunt, gather, and graze livestock. . . . The EMF Site is a continuing source of chemical and radioactive contamination, introducing dangerous airborne, surface, and groundwater contamination into our ecosystem and into the regional ecosystem. Contaminants from the Site move off the private property boundary via groundwater and air and enter the Reservation, impacting our health, our land, and water resources. The groundwater moves generally north-northeast under the EMF Site, and discharges into springs and into the Portneuf River, which flows past the Simplot Don Plant and onto the Reservation. Thousands of mammals, reptiles and birds that have come into contact with the Site have died. The Site has also affected the Bottoms area, our sacred hunting grounds.

The ammonia pipeline through Old Progress Village was constructed in the 1970s to transport ammonia from the port of Tampa to another fertilizer facility in Bartow, Florida.

340. The Medicaid expansion program through the Affordable Care Act (ACA) has been reduced to just 15% of the population are “people of color” and 29% are low-income.
341. Id. at 72-73.
342. Id. at 74.
343. Id. at 75.
344. Id. at 73-74.
345. Id. at 97.
The Shoshone-Bannock ‘Tribes’ heritage includes subsistence fish consumption; a high proportion of the diet of the Shoshone-Bannock Tribes consists of fish and shellfish, which accumulate toxins from polluted water. On August 12, 2020, the Bureau of Land Management approved the transfer of ownership of 719 acres of federal public land entirely within the Tribes’ aboriginal and ceded territory and the Fort Hall Reservation to J.R. Simplot adjacent to Simplot’s phosphogypsum stack. The Shoshone-Bannock Tribes of the Fort Hall Reservation have filed a lawsuit against the federal government challenging that land transfer.

A study examining mortality over decades in a cohort of Florida phosphate fertilizer plant workers found significantly elevated mortality due to all causes, including all cancers, lung cancer, and leukemia as compared to the overall U.S. population and the population of Florida, as well as increased incidence of mental disorders and chronic obstructive pulmonary disease. Although an exposure-response relation could not be established due to limitations of the study, the authors noted that phosphate processing results in exposures to aerosolized radiation, acid vapors, and other airborne toxins. Radiation exposure routes to fertilizer plant workers and local residents near fertilizer plants include external radiation, inhalation and ingestion of radionuclide-containing dust, and inhalation of radon and radon daughters.

To transport phosphate rock and phosphoric acid to and from fertilizer facilities, associated nearby phosphogypsum stack systems are often located in coastal areas of the Gulf. The Gulf region is particularly vulnerable to sea-level rise, with the highest rates of sea-level rise in the nation occurring from the mouth of the Mississippi River westward, where several stacks are located. As seas continue to rise in the coming decades, many of the Gulf Coast stacks are likely to be catastrophically inundated.

On this backdrop of rising sea levels, coastal regions are threatened by increased flooding and intensifying storm surge, which in combination further threaten the integrity of coastal phosphogypsum stacks and future stack expansions. Coastal flooding is becoming more damaging as hurricane-generated storm surges grow more severe due to climate change. Projections anticipate an increase in the acceleration of sea-level rise in Florida, which when combined with intensifying hurricanes and storm surge is greatly increasing the flooding risk. Under a lower emissions Representative Concentration Pathway 4.5 scenario, storm surge is projected to increase by 25% to 47% along the U.S. Gulf and Florida coasts due to the combined effects of sea-level rise and growing hurricane intensity. The increasing frequency of extreme precipitation events is also compounding coastal flooding risk when storm surge and heavy rainfall occur together.

Flooding concerns extend to those associated with high tide. Since the 1960s, sea-level rise has increased the frequency of high-tide flooding by a factor of 5 to 10 for several U.S. coastal communities, and flooding rates are accelerating in many Atlantic and Gulf Coast cities. A local sea-level rise of 1.0 to 2.3 feet would be sufficient to turn nuisance high-tide events into major destructive floods. In Florida specifically, which could have more than six feet of sea-level rise by the end of the century, nuisance flooding due to sea-level rise has already resulted in severe property damage and social disruption.

The frequency, depth, and extent of tidal flooding are expected to continue to increase in the future. As the sea level rises, storm surge and tidal flooding will occur on an increasingly higher sea surface, which will push water further inland and create more flooding. With water pushed further inland, not just during storm surge events, but also due to a general state of elevated sea level, areas once deemed suitable for phosphogypsum stack construction will no longer be so.

Climate change-driven and increasingly frequent, intense, and precipitous storms and hurricanes have already created major problems for phosphogypsum stack management, where maintaining design freeboard and surge capacity in process wastewater impoundments

359. Id.
367. Hayhoe et al., supra note 362.
368. Id.
369. Shimon Widowski et al., Increasing Flood Hazard in Coastal Communities Due to Rising Sea Level: Case Study of Miami Beach, Florida, 126 OCEAN & COASTAL MGMT. 1 (2016).
370. Hayhoe et al., supra note 362.
is critical to dam integrity and preventing large-volume releases to the environment.

Sinkholes occur when the sand, clay, shells, or other near-surface rock subsides or collapses into fissures and cavities in the underlying carbonic rock. This happens when the carbonic rock that forms karst geography dissolves after coming into contact with acidic rainwater, surface water, or groundwater. Soluble rock underlies nearly 18% of the total area of the United States, but Florida—which has the most phosphogypsum stacks of any state—is also the most prone to sinkholes. For example, in 2012, Florida experienced a massive sinkhole event leading to hundreds of collapse-sinkholes across the state following record rainfall. Sinkholes are of particular concern in Florida for their direct effect on aquifer vulnerability and Florida’s dependence on groundwater for its water needs.

There have been major sinkholes underneath phosphogypsum stacks in Florida in the past few decades, releasing millions of gallons of untreated process wastewater and an undetermined amount of phosphogypsum into the Floridan aquifer. Remediation of contamination in the Floridan aquifer is likely not possible, as one study found “there is uncertainty in the fate of the contaminant waste after the sinkhole collapse.” Another study called for an improved understanding of karst processes and characterization of fast-moving conduit flow patterns. While these sinkholes released an alarming amount of phosphogypsum into subsurface waters, at least they were in known, discrete, isolated locations where a well-funded and technologically equipped company was responsible for mitigating the damage. No such outcome would be likely in the event of a sinkhole in a road containing phosphogypsum.

While still attempting to remediate the contamination caused by the 2016 sinkhole, the FDEP has authorized a 231-acre expansion of the same phosphogypsum stack. And remediation of contamination in the Floridan aquifer is likely not even possible, as one study found “there is uncertainty in the fate of the contaminant waste after the sinkhole collapse.” Another study called for an improved understanding of karst processes and characterization of fast-moving conduit flow patterns. In addition to these reported sinkholes, at least two unreported sinkhole-like “anomalies” occurred in 2004 and 2013 at the same New Wales facility, releasing undetermined amounts of phosphogypsum and process wastewater to the aquifer below.

Florida adopted its Phosphogypsum Management Rule in 1993, which established a performance standard based on the permitted zone of discharge. Stacks are required to be designed, operated, and maintained such that groundwater and surface water quality standards are not violated beyond the zone. The state has entered into numerous consent orders and corrective action plans for permit violations. For instance, after the 2016 New Wales sinkhole, where Mosaic Fertilizer violated its permit’s vertical zone of discharge by discharging into the Floridan aquifer, the FDEP and Mosaic entered into a consent order directing the company to study methods and technologies to locate “zones of weakness, solution cavities, erosion features or other subsurface anomalies” that may cause sinkholes.

B. Stack Owners Have Gone Bankrupt and Abandoned Their Facilities

Mulberry Phosphates, Inc. declared bankruptcy in February 2001, giving the FDEP approximately 48 hours’ notice that it would abandon its Piney Point facility and that the phosphogypsum stack there was in need of continuous maintenance for which the corporation would be unable to provide any funding. The total process water and pore volume was 1.2 billion gallons when Mulberry Phosphates declared bankruptcy. Since each inch of rain that falls on the facility has been calculated to add approximately 12.5 million gallons of water to the process wastewater volume, a series of reasonably strong rain events adding 12 to 15 inches, or a 50- or 100-year storm, could overflow part of the berm and collapse the entire structure, releasing several million gallons of process water and some portion of the pore waters as a slurry and putting more than 60 homeowners in the immediate area in imminent danger of a spill.

The state moved to assume receivership in bankruptcy proceedings, and was then forced to immediately discharge 50 million gallons of process wastewater after only single-lime treatment into adjacent Bishop Harbor. Single-lime treatment raises the process wastewater pH to 4.5 standard units and removes most of the metal constituents, but does not remove enough phosphorus or nitrogen to meet state or federal requirements.

373. Id. at 7.
375. Id. at 5.
376. Id.
377. Id.; see also supra notes 314-16 and accompanying text.
378. Sandu et al., supra note 304.
379. Sandu, supra note 304.
381. Sandu et al., supra note 304.
382. Sandu, supra note 304.
385. Id.
388. Similar to process water in chemical composition, pore water is not ponded, but rather interspersed throughout the stack. Id. at 41.
389. Id. at 40.
390. Id. at 41.
federal water quality standards or to be discharged on even a limited basis to surface waters such as the poorly flushed Bishop Harbor.391

While the state managed the site, it intentionally released 248 million gallons of partially treated process wastewater into the Gulf of Mexico via 35 barge trips from July 20 to November 30, 2003.392 Between 2005 and 2009, the FDEP drained and lined the ponds atop the stack as part of a project to “reclaim” the stack for beneficial reuse. HRK Holdings acquired the stack in 2006 and allowed it to be used for deposition of dredge material from the adjacent Port Manatee expansion activities. This attempted beneficial reuse of a phosphogypsum stack has been an utter failure, resulting in multiple liner tears and releases into Bishop Harbor, with a 2011 leak sending 170 million gallons into Bishop Harbor.393 HRK Holdings informed local officials that the ponds are again nearing capacity, able to store only an additional 60 million gallons of water, or 19 inches of rainfall.394 In 2012, HRK Holdings filed for bankruptcy.395

Over Easter weekend 2021, the FDEP authorized the discharge of up to 480 million gallons of wastewater from one of the ponds. That water contained nitrogen, ammonia, phosphorus, and an undisclosed amount of heavy metals and radioactivity. The discharge fueled a red tide bloom in Tampa Bay that raged for more than one month and killed tons of marine life, including endangered and threatened species like the Florida manatee. On August 25, 2021, a court authorized the emergency appointment of a receiver, citing imminent harm and HRK’s inability to afford averting disaster.396

Mississippi Phosphates Corporation filed for Chapter 11 bankruptcy in December 2014, ceasing plant operations at the time and leaving more than 700 million gallons of process wastewater stored at the facility, with an additional nine million gallons generated for every one inch of rainfall.397 The bankruptcy settlement established a trust that was used to pay for process wastewater treatment overseen by the state, but the funds were depleted on February 10, 2017. EPA’s Emergency Response and Removal Program took control of the facility on February 11, 2017, and wastewater treatment is occurring at a rate of approximately 2,000,000 gallons per day at a cost to taxpayers of approximately $1,000,000 per month.398

Groundwater beneath the plant is contaminated with arsenic, cadmium, lead, selenium, and thallium at levels above EPA’s Safe Drinking Water Act (SDWA)399 maximum contaminant levels, and multiple city-owned groundwater wells are located within four miles of the site.400 Surface soil contains arsenic above screening values for site workers and elevated levels of cadmium, chromium, lead, nickel, vanadium, radium-226, radium-228, and associated decay products. Bayou Cosssett sediment is contaminated with arsenic, chromium, and lead above screening values for the salt water environment.401

C. EPA Must Regulate Phosphogypsum and Process Wastewater Under TSCA

Despite a preference for initiating prioritization for substances listed on the 2014 TSCA Work Plan for Chemical Assessments,402 EPA retains discretion to initiate prioritization for substances not on the work plan, like phosphogypsum and process wastewater from phosphoric acid production, since TSCA regulations require only that 50% of the substances currently undergoing risk evaluation are drawn from the work plan. Because EPA indicated almost 30 years ago that phosphoric acid production wastes would be subject to a future TSCA regulatory program, EPA should now initiate their prioritization as high-priority substances under the Act.

Rather than study the toxicity, concentration of hazardous constituents at various U.S. phosphogypsum stacks, exposure, and other health and environmental effects relevant to an unreasonable risk finding, the majority of current, published phosphogypsum research is centered on potential commercial uses that are already banned by EPA under the NESHAP due to the risk of widespread radon exposure. With such misdirected science, many people living near a phosphogypsum stack may not even know what the substances in the stack are, let alone the risks to which they are being subjected. In this respect, the state-funded Florida Industrial and Phosphate Research Institute, which advocates for a reversal of the limited ban,403 might as well be a trade association.

Since the 1990 report to Congress, updated information on population-level exposure risks for radionuclide constituents and radon emissions for phosphogypsum stack systems is necessary, as the population within 80 kilometers of each phosphogypsum stack has likely greatly increased, as well as the number and size of the stacks themselves. Updated toxicity information using the toxicity characteristic leach procedure, which replaced the EP, is also necessary. Should EPA designate phosphogypsum and process wastewater as high-priority substances and conduct a risk evaluation, a testing rule under §4404

391. Id.
398. Id.
401. Id.
will contribute to the development of information necessary to conduct the risk evaluation.

The need for a §4 testing rule is only further underscored should EPA find that there are not sufficient facts to warrant initiation of prioritization. Further, should EPA initiate prioritization but find that the development of new information is necessary to finalize a prioritization decision for phosphogypsum and process wastewater, EPA should exercise its authority under §4(a)(2)(B) to obtain that information and establish priority.

1. The Necessary Information Is Reasonably Available

To initiate prioritization, TSCA regulations require only that EPA believe information on relative hazard and exposure potential necessary to prioritize the substance is reasonably available. The information and findings in EPA’s 1990 Report to Congress on Special Wastes From Mineral Processing and any supplemental analysis concerning the risks of phosphogypsum and process wastewater to human health and the environment are certainly reasonably available, and provide enough information on the risks of these substances to not only initiate prioritization, but also to make a high-priority designation based on the exposure potential and substantial hazard findings in that report alone, especially when considering that both the size of the stacks and exposed populations have greatly increased since 1990. Once EPA initiates the prioritization process, however, any information EPA has obtained or any findings EPA has made, including those in the 1990 report to Congress, concerning the costs to the industry of certain regulatory, management, or disposal alternatives, must not be considered under TSCA as amended by the Lautenberg Act.

2. EPA Has Already Determined That a Risk Management Regulatory Program Is Appropriate

Regulation of chemical substances under TSCA involves a three-step process: (1) evaluation of the substance’s risk to human health and the environment, without consideration of costs; (2) a determination that the risk is unreasonable; and (3) promulgation of regulations necessary to minimize or manage the unreasonable risk posed by the chemical substance so that the risk is no longer unreasonable. EPA’s 1991 Bevill determination not only exempted phosphogypsum and process wastewater from RCRA Subtitle C regulation, it also determined that a TSCA regulatory program was more appropriate, rather than a RCRA Subtitle D program or no regulation at all. Inherent to this determination that TSCA regulation is appropriate is an unreasonable risk determination. EPA’s investigation of a TSCA regulatory program to manage phosphogypsum and process wastewater means these substances not only may—but do—pose an unreasonable risk of injury to human health and the environment.

3. Other Federal Regulatory Programs Are Inadequate to Manage the Risk

Under TSCA §9, if a chemical substance’s risk of injury to human health and the environment is managed effectively under a different statute, regulation under TSCA is not necessary. Section 9 also directs that if EPA determines that a risk to health or the environment associated with a chemical substance or mixture could be eliminated or reduced to a sufficient extent by actions taken under those other federal laws, EPA must use those other laws unless EPA determines it is in the public interest to protect against such risk by actions taken under TSCA.

With the exception of Subtitle C regulation under RCRA, from which phosphogypsum and process wastewater remain Bevill-excluded, other federal regulatory programs remain inadequate to manage the risk of injury to human health and the environment. EPA has concluded that the CWA’s NPDES permitting requirements govern point source discharges to surface waters, but not groundwaters. The SDWA’s regulations apply only to public water systems, with limited enforcement at the tap. And the CAA’s NESHAP remains minimally protective for radon emissions, containing no prescriptive requirements other than the numerical radon flux standard tested once at the time of closure and imposing no pollution control technology.

4. Feasible Alternatives to Current Management Are Available

There are alternatives that EPA can explore after it fully evaluates the risk posed by these substances, including:

1. Taking advantage of the high mobility of metal and nonmetal ions in phosphogypsum when leached by implementing a closure technique where the entire stack is rinsed with a “clean” but non-potable water, the leachate collected, and treated
2. Requiring new stack expansions like the 231-acre expansion planned for New Wales to have double geomembrane liners and leak detection leachate systems in place
3. Requiring facilities to use the hemihydrate wet process rather than the dihydrate process, because it produces fewer impurities in both the phosphoric acid product and phosphogypsum

407. Carter et al., supra note 21, at 200.
4. Requiring double-lime treatment and reverse osmosis for stored process wastewater and stack leachate

5. Requiring a soil, synthetic, or artificial turf cover for inactive portions of stacks

6. Regulating the quality of phosphate ore mined, as the radioactivity of phosphogypsum is dependent on the radium content of the mined phosphate ore itself

7. Requiring phosphoric acid production limits to limit the amount of phosphogypsum generated

V. Conclusion

The damage already caused by phosphogypsum and process wastewater disposal is a consequence of this country’s “most dramatic environmental regulatory loophole.”409 EPA’s failure to establish specific regulations to control phosphoric acid production wastes as promised under either RCRA or TSCA is now more than 30 years running.

Given the substantial present and potential hazards to human health posed by these improperly managed wastes, especially in low-wealth and BIPOC communities, and EPA’s stated commitment to environmental justice, EPA must reverse its Bevill regulatory determination for phosphogypsum and process wastewater and subject these hazardous waste mountains to RCRA Subtitle C regulations. Further, given the magnitude of potential exposure, EPA must begin the prioritization process for a phosphogypsum and process wastewater risk evaluation under TSCA §6 and issue a §4 testing rule to develop information with respect to health and environmental effects relevant to an unreasonable risk finding for disposed phosphogypsum, and a TSCA Significant New Use Rule under §5 for phosphogypsum used in road construction.
